Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code

Authors

  • B. Leal-Acevedo Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • P. G. Reyes-Romero Science Facultad, Autonomous University of the State Mexico, 100 Instituto Literario avenue, 50000 Toluca. Mexico
  • F. Castillo Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251Cuernavaca Morelos, Mexico
  • I. Gamboadebuen Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico

DOI:

https://doi.org/10.15415/jnp.2018.61011

Keywords:

Specific energy, Linear energy, PENELOPE code

Abstract

The specific and linear energy was calculated in target sizes of 10 μm, 5 μm, 1 μm, 60 nm, 40nm and 20 nm by taking into account the contribution of the primary photon beams and the electrons generated by them in LiF: Mg, Ti (TLD-100). The simulations were carried out by the code PENELOPE 2011. Using different histories of primary particles, for each energy beams the mean deposited energy is the same, but to achieve a statistical deviation lower than 1% the value of 108was fixed. We find that setting the values C1 = 0.1 C2 = 0.1 and Wcc = Wcr = 50 eV the time of simulation decreases around the 25%. The uncertainties (1 SD) in the specific energy increases with energy for all target sizes and decreases with target size, with values from 1.7 to 94% for 20 nm and between 0.1 and 0.8% for 10 μm. As expected, the specific and linear energies decrease with target size but not in a geometrical behavior.

Downloads

Download data is not yet available.

References

M. Bernal and J. Liendo , Med Phys 36, 620–625, (2009). https://doi.org/10.1118/1.3056457

A. Kellerer and D. Chmelevsky, Concepts of microdosimetry, I. Quantities. Radiat Environ Biophys 12, 61–69, (1975). https://doi.org/10.1007/BF02339810

A. Kellerer and D. Chmelevsky, Radiat Environ Biophys 12, 205–216 (1975). https://doi.org/10.1007/BF01327348

P. Olko, Radiat Prot Dosimetry 65, 151–158, (1996). https://doi.org/10.1093/oxfordjournals.rpd.a031610

P. Olko, Henryk Niewodniczaski Institute of Nuclear Physics. (2002).

P. Olko, P. Bilski, M. Budzanowski, L. Czopyk, J. Swakon, et al., Radiat Prot Dosimetry 122, 378–381, (2006). https://doi.org/10.1093/rpd/ncl46

H. Rossi, Radiat Environ Biophys 17, 29–40, (1979). https://doi.org/10.1007/BF01323118

F. Salvat, J. M. Fernández-Varea and J. Sempau, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport (No. NEA/NSC/DOC (2011 5). In Nuclear Energy Agency. Workshop Proceedings. Barcelona, (2011).

B. Scott and H. Schöllnberger, Radiat Prot Dosimetry 91, 377–384, (2000). https://doi.org/10.1093/oxfordjournals.rpd.a033247

F. Villegas, N. Tilly and A. Ahnesjö, Phys Med Biol 58, 6149–6162, (2013).

F. Villegas, N. Tilly, G. Bäckström, A. Ahnesjö, Phys Med Biol 59, 5531–5543, (2014). https://doi.org/10.1088/0031-9155/59/18/5531

Downloads

Published

2018-08-06

How to Cite

(1)
Leal-Acevedo, B. .; Reyes-Romero, P. G. .; Castillo, F. .; Gamboadebuen, I. . Effect of the Target Size in the Calculation of the Energy Deposited Using PENELOPE Code. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 67-70.

Issue

Section

Articles