Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation

Authors

  • O. Legorreta-Alba Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico; Chemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • E. Cruz-Zaragoza Institute of Nuclear Sciences, National Autonomous University of Mexico (UNAM), PO Box 70-543, 04510 Mexico City, Mexico
  • D. Diaz Chemistry Faculty, National Autonomous University of Mexico (UNAM), 3000 Universidad avenue, 04510 Mexico City, México
  • J. Marcazzo "Arroyo Seco” Institute of Physics (Uncpba) and Cificen (Uncpba-Cicpba Conicet), Pinto 399, 7000 Tandil, Argentina

DOI:

https://doi.org/10.15415/jnp.2018.61012

Keywords:

Magnesium tetraborate, Dysprosium, Thermoluminescence, Beta-radiation, Dosimeter

Abstract

The synthesis and thermoluminescent characteristics of dysprosium-doped MgB4O7 are analyzed. The phosphor at different concentrations (0, 0.1, 0.5, 1, 2 and 4 mol%) of the dopant was prepared by the solution-assisted method. The magnesium borate compound was confirmed by X-ray diffraction. The annealing and dopant concentrations effects on the crystalline matrix were investigated. The highest thermoluminescent sensitivity was found with 450°C of annealing temperature and at high Dy3+ concentration too. The un-doped MgB4O7 phosphor shows a broad glow curve which peaked at 199°C and about 306 °C. Introducing Dy3+ dopant in the matrix that behavior was strongly changed. The wide glow curve shows three glow peaks; two small shoulders at 124 and 195 °C, and a highest peak between 323 and 336 °C temperature range. A large linear dose-response (5 – 2000 mGy) beta dose was obtained. The complex glow curves were deconvolved and the kinetics parameters were determined considering the general order kinetics model.

Downloads

Download data is not yet available.

References

O. Annalakshmi, M. T. Jose, U. Madhusoodanan, J. Sridevi, B. Venkatraman, G. Amarendra, A. B. Mandal, Radiat. Eff. Defects Solids, 169(7), 636–645 (2014). https://doi.org/10.1080/10420150.2014.918128

A. J. J. Bos, Nucl. Instrum. Methods B, 184, 3–28 (2001). https://doi.org/10.1016/S0168-583X(01)00717-0

L. L. Campos, O. O.Fernandes, Radiat. Prot. Dosim., 33(1/4), 111–113 (1990). https://doi.org/10.1093/oxfordjournals.rpd.a080769

G. Cedillo Del Rosario, E. Cruz-Zaragoza, M. García Hipólito, J. Marcazzó J. M. A. Hernández, H. S. Murrieta, Applied Radiation and Isotopes, 127, 103–108 (2017). https://doi.org/10.1016/j.apradiso.2017.05.018

E. Cruz-Zaragoza, G. Cedillo Del Rosario, M. García Hipólito, J. Marcazzó, J. M. A. Hernández, E. Camarillo, H. S. Murrieta, J. Nucl. Phys. Mat. Sci. Rad. App., 5(1), 169–178 (2017). https://doi.org/10.15415/jnp.2017.51016

E. Cruz-Zaragoza, C. Furetta, J. Marcazzó, M. Santiago, C. Guarneros, M. Pacio, R. Palomino, J. Lumin., 179, 260–264 (2016). https://doi.org/10.1016/j.jlumin.2016.07.003

T. Depci, G. Ozbayoglu, A. Yilmaz, Metall. Mater. Trans. A, 41(10), 2284–2594 (2010). https://doi.org/10.1007/s11661-010-0341-0

M. Dogan, A. N. Yazici, Journal of Optoelectronics and Advanced Materials, 11(11), 1783–1787 (2009).

C. M. H. Driscoll, S. J. Mundy, J. M. Elliot, Radiat. Prot. Dosim., 1(2), 135–137 (1981).

D. Evis, A. Yucel, N. Kizilkaya, et al., Applied Radiation and Isotopes, 116, 138–142 (2016). https://doi.org/10.1016/j.apradiso.2016.08.004

F. Fukuda, N. Takeuchi, J. Mater. Sci. Lett., 8, 1001– 1002 (1989). https://doi.org/10.1007/BF01730467

C. Furetta, Handbook of Thermoluminescence. Singapore: World Scientific Publishing Co. Pte. Ltd. (2003). https://doi.org/10.1142/5167

C. Furetta, G. Kitis, P. S. Weng, T. S. Chu, Nucl. Instrum. Methods A, 420, 441–445 (1999). https://doi.org/10.1016/S0168-9002(98)01198-X

T. Hitomi, Radiothermoluminescence Dosimeter and Materials. U.S. Patent Filed no. 213 950 (1971).

M. Israeli, N. Kristianpoller, R. Chen, Phys. Rev. B, 6(12), 4861–4867 (1972). https://doi.org/10.1103/PhysRevB.6.4861

S. P. Lochab, A. Pandey, P. D. Sahare, R. S. Chauhan, N. Salah, R. Ranjan, Phys. Status Solidi A, 204(7), 2416–2425 (2007). https://doi.org/10.1002/pssa.200622487

C. F. May, J. A. Partridge, J. Chem. Phys., 40, 1401–1409 (1964). https://doi.org/10.1063/1.1725324

E. F. Mische, S. W. S. Mckeever, Radiat. Prot. Dosim., 29(3), 159–175 (1989). https://doi.org/10.1093/oxfordjournals.rpd.a080548

M. Prokic, Nucl. Instrum. Methods, 175, 83–86 (1980). https://doi.org/10.1016/0029-554X(80)90262-1

P. D. Sahare, M. Singh, P. Kumar, J. Lumin., 160, 158–164 (2015). https://doi.org/10.1016/j.jlumin.2014.11.042

M. Santiago, C. Graseli, E. Caseli, M. Lester, A. Lavat, F.Spano, Phys. Stat. Sol. (a), 185(2), 285–289 (2001). https://doi.org/10.1002/1521-396X(200106) 185:2<285::AID-PSSA285>3.0.CO;2-9

L. F. Souza, P. L. Antonio, L. V. E. Caldas, D. N. Souza, Nucl. Instrum. Methods Phys. Res. A, 784, 9–13 (2015). https://doi.org/10.1016/j.nima.2014.12.030

A. K. Subanakov, Zh. G. Bazarova, A. I. Nepomnyschih, A. V. Perevalov and B. G. Bazarov, Inorg. Mater., 50(5), 485–488 (2014). https://doi.org/10.1134/S0020168514050185

J. H. Schulman, R. D. Kirk, E. J. West, In Proc. Int. Conf. on Luminescence Dosimetry, US AEC Symposium series CONF-650637 (pp. 113–117). Stanford University, USA (1967).

D. I. Shahare, S. J. Dhoble, S. V. Moharil, J. Mater. Sci. Lett., 12, 1873–1874 (1993). https://doi.org/10.1007/BF00540016

M. Takenaga, O. Yamamoto, T. Yamashita, Nucl. Instrum. Methods, 175, 77–78 (1980). https://doi.org/10.1016/0029-554X(80)90259-1

E. G. Yukihara, E. D. Milliken, B. A. Doull, J. Lumin., 154, 251–259 (2014). https://doi.org/10.1016/j.jlumin.2014.04.038

Downloads

Published

2018-08-06

How to Cite

(1)
Legorreta-Alba, O. .; Cruz-Zaragoza, E. .; Diaz, D. .; Marcazzo, J. . Synthesis of MgB4O7:Dy3+and Thermoluminescent Characteristics at Low Doses of Beta Radiation. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 6, 71-76.

Issue

Section

Articles