Shape Coexistence in Hot Rotating 100Nb

Authors

  • Mamta Aggarwal Department of Physics, University of Mumbai, kalina Campus, Mumbai 400 098.

DOI:

https://doi.org/10.15415/jnp.2018.52026

Keywords:

Statistical theory, shape transition, A= 80-100, level density parameter, shape coexistence

Abstract

Temperature and angular momentum induced shape changes in the well deformed 100Nb have been investigated within the theoretical framework of Statistical theory combined with triaxially deformed Nilson potential and Strutinsky prescription. Two shape coexistence, one in the ground state of 104Nb between oblate and triaxial shapes and another one between oblate and rarely seen prolate non-collective shapes in excited hot rotating 100Nb at the mid spin values around 14-16h are reported for the first time. The level density parameter indicates the influence of the shell effects and changes drastically at the shape transition. The band crossing is observed at the sharp shape transition.

Downloads

Download data is not yet available.

References

Aggarwal, Mamta, Phys. Lett. B 693, 489 (2010).

Aggarwal, Mamta, Phys. Rev. C 90, 064322 (2014).

Rajasekaran, M., Rajasekaran, T. R., and Arunachalam, N., Phys. Rev. C 37, 307 (1988).

Bethe, H., Rev. Mod. Phys. 9, 69 (1937).

Ericson, T., Adv. Phys. 9, 425 (1960).

A. Bohr and B. R. Mottelson, in Nuclear Structure, Vol. I, P 281 (Benjamin, New York, 1969).

Aggarwal, M., Int. J. of Mod. Phys. E 17, 1091 (2008).

Rajasekaran, M., Rajasekaran, T. R., and Arunachalam, and Devanathan, V., Phys. Rev. Lett. 61, 2077 (1988).

Aggarwal, M., and Kailas, S., Phys. Rev. C 81, 047302 (2010).

Wallace, R. K. , and Woosely, S. E., Astrophys. J. Suppl. 45, 389 (1981).

Naoki Tajima and Norifumi Suzuki, Phys. Rev. C 64, 037301, (2001).

Lalazissis, G. A., Sharma, M. M., and Ring, P. , Nucl. Phys. A 597, 35 (1996).

Ignatyuk A. , et al. Nucl. Phys. A 346, 191 (1980).

Newton, J. O. , et. al., Phys. Rev. Lett. 46, 1383 (1981).

Lhersonneau,G., et. al. , Phys, Rev. C 49 (1994) 1379.

Wood, J.L, et. Al, Phys. Rep. 215 (1992) 101.

Aggarwal, M., Phys. Rev. C 89, 024325 (2014).

Saxena, G., et al., Proceedings of the DAE Symp. on Nucl. Phys. 62, 112 (2017).

Aggarwal, M. and Saxena, G., Proceedings of the DAE Symp. on Nucl. Phys. 62, 292 (2017).

Aggarwal, M., and Kailas, S., Proceedings of the DAE Symp. on Nucl. Phys. 62, 96 (2017).

Aggarwal, M., Phys. Lett. B (communicated) (2018).

Nyako, B. M., et al., Phys. Rev. C 60, 024307 (1999).

Dubuc, J. et al., Phys. Rev. C 37, 1932 (1988).

A. L. Goodman, Phys. Rev. C 37, 2162 (1988).

P. Moller et al., At. Data Nucl. Data Table, 59, 185 (1995).

Frauendorf, S. Rev. Mod. Phy., 73, 463 (2001).

Goodman, A. L. , Phys. Rev. C 35, 2338 (1987).

Aggarwal, M., Journal of Nucl. Phys. Material Sci. Radiation and Applications (JNPMSRA) 3, No. 2, 179 (2016).

K. Banerjee, et. al., Phys. Rev. C 85 (2012) 064310.

M. Gohil et. al., Phys. Rev. C 91 (2015) 014609; EPJ Web of Conf. 66 (2014) 03073.

Balaram Dey et. al.,Phys. Rev. C 91 (2015) 044326.

Downloads

Published

2018-02-05

How to Cite

(1)
Aggarwal, M. . Shape Coexistence in Hot Rotating 100Nb. J. Nucl. Phy. Mat. Sci. Rad. A. 2018, 5, 291-298.

Issue

Section

Articles