Radiation Induced Oxidation Reactions of Ferrous Ions: An Agent-based Model

  • A.L. Rivera Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México.Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México,México; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México
  • A.S. Ramos Bernal Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México.Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México,México.
  • A. Negrón-Mendoza Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México.Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México,México.
Keywords: Chemical reactions, Fricke dosimeter, Prey-predator model, Agent-based model


Chemical Fricke dosimeter in the laboratory can be submitted to gamma radiation at low temperatures to study the evolution of oxidation reactions induced by radiation, a key process to understand the formation of complex molecules. Products generated by the interaction of the different elements under radiation can be determined through a mathematical model that considers chemical reactions as coupled nonlinear ordinary differential equations involving the mass balance of all the species in the reaction. In this paper is implemented an alternative way of solving this system of equations, species’ concentrations are calculated through an agent-based model implemented in Python. The model is a modified version of the prey-predator model where each chemical specie involved is considered as an agent that can interact with other specie with known reaction rates leading to production (source terms) and to destruction (sink terms). Here, the radiation is a factor that affects product formation while the bath temperature modifies the reaction speed. This model can reproduce experimental concentrations of products and the consumption of ferrous ions from a laboratory reaction of irradiation of iron salt solutions at 3 different temperatures (dry ice, liquid nitrogen, and room temperature).


Negrón-Mendoza, A, & Ponnamperuma, C. (1982). Prebiotic formation of higher molecular weight compounds from the photolysis of aqueous acetic acid. Photochemistry and Photobiology, 36(5), 595-597, doi: 10.1111/j.17511097.1982.tb04421.x.

Draganić, Z.D., Vujošević, S.I., Negrón-Mendoza, A., Azamar, J.A., & Draganić, I.G. (1985). Radiation chemistry of a multicomponent aqueous system relevant to chemistry of cometary nuclei. Journal of molecular evolution, 22(2), 175-187, doi: 10.1007/BF02101695.

Negrón-Mendoza, A., Albarran, G., Ramos, S., & Chacon, E. (1995). Some aspects of laboratory cometary models. Journal of Biological Physics, 20(1), 71–76, doi: 10.1007/BF00700422.

Ehrenfreund, P., & Charnley, S. B. (2000). Organic molecules in the interstellar medium, comets, and meteorites: A Voyage from Dark Clouds to the Early Earth. Annual Review of Astronomy and Astrophysics, 38, 427-483, doi: 10.1146/ annurev.astro.38.1.427.

Colín-García, M., Negrón-Mendoza, A., & Ramos-Bernal, S. (2009). Organic material formed from gamma irradiation of frozen HCN as a cometary ice analog: implication to the origin of life. International Journal of Astrobiology, 9, 279-288.

Taquet, V., Wirström, E.S., & Charnley, S.B. (2016). Formation and recondensation of complex organic molecules during protostellar luminosity outbursts. The Astrophysical Journal, 821(1), 46, doi: 10.3847/0004-637X/821/1/46.

O’Donnell, J.H.O., & Sangster, D.F. (1970). Principles of Radiation Chemistry. Elsevier, New York.

Schmidt, K.H. (1972). Electrical conductivity techniques for studying the kinetics of radiation-induced chemical reactions in aqueous solutions. International Journal for Radiation Physics and Chemistry, 4(4), 439-468, doi: 10.1016/00207055(72)90020-4.

Castillo, S. Negrón-Mendoza, A., Draganic, Z.D., & Draganic, I.G. (1985). The radiolysis of aqueous solutions of malic acid. Radiation Physics and Chemistry, 26(4), 437-443, doi: 10.1016/0146-5724(85)90232-8.

Draganic, Z.D., Negrón-Mendoza, A., Navarro-González, R., & Vujosevic, S.I. (1987). The presence of polymeric material in radiolyzed aqueous solution of ammonium bicarbonate. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 30(4), 229-231, doi: 10.1016/1359-0197(87)90126-3.

Bjergbakke, E., Draganić, Ζ. D., Sehested, Κ., & Draganić, I. G. (1989). Radiolytic products in waters. Radiochimica Acta, 48(1), 73-78, doi: 10.1524/ ract.1989.48.12.73.

Keene, J.P. (1960). Kinetics of radiation-induced chemical reactions. Nature 188(4753), 843-844, doi: 10.1038/188843b0.

Malchow, H., & Petrovskii, S.V. (2002). Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Mathematical and Computer Modelling, 36(3), 307-319.

Sánchez-Mejorada, G., Frías, D., Negrón-Mendoza, A., & Ramos-Bernal, S. (2008). A comparison between experimental results and a mathematical model of the oxidation reactions induced by radiation of ferrous ions. Radiation Measurements, 43(2), 287–290, doi: 10.1016/j.radmeas.2007.11.038.

Cruz-Castañeda, J., Negrón-Mendoza, A., Frías, D., Colín-García, M., Heredia, A., et al. (2015). Chemical evolution studies: The radiolysis and thermal decomposition of malonic acid. Journal of Radioanalytical and Nuclear Chemistry, 304(1), 219-225, doi: 10.1007/s10967-014-3711-z.

Semenov, S.N., Kraft, L.J., Ainla, A., Zhao, M., Baghbanzadeh, M., Campbell, V.E., et al. (2016). Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature, 537(7622), 656-660, doi: 10.1038/ nature19776.

Morii, Y., Terashima, H., Koshi, M., Shimizu, T., & Shima, E. (2016). ERENA: A fast and robust Jacobian-free integration method for ordinary differential equations of chemical kinetics. Journal of Computational Physics, 322, 547-558, doi: 10.1016/j.jcp.2016.06.022.

Garvie, M.R. (2007). Finite-Difference schemes for reaction–diffusion equations modeling Predator–Prey interactions in MATLAB. Bulletin of mathematical biology 69(3), 931-956, doi: 10.1007/s11538-006-9062-3.

Zhdanov, V.P. (2002). Monte Carlo simulations of oscillations, chaos and pattern formation in heterogeneous catalytic reactions. Surface Science Reports, 45(7), 231-326, doi: 10.1016/S0167-5729(01)00023-1.

Rivera, A.L., Negrón-Mendoza, A., & Ramos-Bernal, S. (2016). “Agent-based model of oxidation reactions of ferrous ions”. Journal of Nuclear Physics, Material Sciences, Radiation and Applications 4(1), 149-157, doi: 10.15415/ jnp.2016.41015.

Ausloos, M., Dawid, H., & Merlone, U. (2015). Spatial interactions in agentbased modeling. In Complexity and Geographical Economics (pp. 353-377). Springer International Publishing.

Berryman, A.A. (1992). The origin and evolution of predator–prey theory. Ecology 73(5), 1530–1535, doi: 10.2307/1940005.

Pascual, M. (1993). Diffusion-induced chaos in a spatial predator-prey system. Proceedings of the Royal Society of London B, 251(1330), 1-7, doi: 10.1098/ rspb.1993.0001.

Pal, D., & Mahapatra, G.S. (2016). Dynamic behavior of a predator–prey system of combined harvesting with interval-valued rate parameters. Nonlinear Dynamics, 83, 2113–2123, doi: 10.1007/s11071-015-2469-3.

How to Cite
A.L. Rivera; A.S. Ramos Bernal; A. Negrón-Mendoza. Radiation Induced Oxidation Reactions of Ferrous Ions: An Agent-Based Model. J. Nucl. Phy. Mat. Sci. Rad. A. 2017, 5, 15-23.