Radon Exhalation from Industrial Residues as Suitable Additives for Building Materials

  • H. Barros Universidad Simón Bolívar. Apartado 89000, Caracas 1080 A, Venezuela.
  • G. Espinosa Instituto de Física, Universidad Nacional Autónoma de México, Coyoacán, México
  • W. Rodriguez Universidad Simón Bolívar. Apartado 89000, Caracas 1080 A, Venezuela
  • L. Sajo-Bohus Universidad Simón Bolívar. Apartado 89000, Caracas 1080 A, Venezuela
Keywords: TENORM, Phosphogypsum, Red Mud, Radon, Building Additives


Radon exhalation from phosphogypsum (PG) and red mud (RM) samples are of environmental concern. The study is oriented to evaluate by different nuclear techniques, industrial materials cumulated in sites at Morón (PG) and Puerto Ordaz (RM) in Venezuela. RM samples and industrial by products are assessed for its potential use as additives in building materials regarding its radiological health risk. Radioactive matter concentration in RM is up to 11.6 kBq.kg-1. Radon concentration range for RM dry powder is between DL and 2.5 kBq.m-³ and for PG is between 105-340 Bq.m-³. Results indicate that industrial by product before it can be used as additive; require remedial actions to lower the environmental impact. Experimental values are compared with locally available cement, bricks and gypsum building materials.


H. Sutar, Mishra S. C., Sahoo S. K., Chakraverty A.P. and Maharana H.S. (2014). Progress of Red Mud Utilization: An Overview. American Chemical Science Journal 4(3), 255–279.

C. Klauber, M. Gräfe, G. (2011). Power. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108, 11–32.

B. Omana, A. Gauthier. Reuse Options of Venezuelan Bauxite Residue: Potential Applications in Acid Mine Drainage Remediation. Available in internet Jul 10, 2015. http://conference2015.redmud.org/wp-content/uploads/2015/10/BrendaOMANA-secure.pdf

F. Farina, F. Pino, L. Sneyers, P. Vermaecker, H. Barros, L. Sajo-Bohus, Mackowiak Ma. M, A. Antczak, E. Greaves and D. (2007). Palacios. k0-INAA of Archaeological and Industrial Venezuelan Samples. AIP Conference Proceedings 947. The 7th Latin American Symposium on Nuclear Physics and Applications. 1, 467–468.

US-EPA. (1992). Potential uses of Phosphogypsum and associated risks: Background information document. EPA 402-r92-002. US-EPA, Washington, DC.

C. Orlando, P. Orlando, L. Patrizii, L. Tommasino, S. Tonnarini, R. Trevisi and P. Viola (2002). A Passive Radon Dosemeter Suitable for Workplaces.Radiation Protection Dosimetry Vol. 102, No. 2, 163–168. https://www.researchgate.net/publication/11055273_A_Passive_Radon_Dosemeter_Suitable_for_Workplaces [accessed May 10, 2017]

Fiechtner-Scharrer A, Mayer S, Boschung M, Whitelaw A. (2011). Influence of variation of etching conditions on the sensitivity of PADC detectors with a new evaluation method. Radiat Prot Dosimetry. 144(1-4), 150–4. doi: 10.1093/rpd/ ncq558.

A. O. Ferreira, Brigitte R. S. Pecequilo and Reginaldo R. Aquino (2013). Efficiency Calibration Factor For Radon Exhalation In Rocks By Using CR-39 SSNTD and The “SEALED-CAN” Technique. International Nuclear Atlantic Conference - INAC 2013, Recife, PE, Brazil, Nov. 24–29.

Y. Pontikes, G.N. Angelopoulos (2013). Resources, Review, Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Conservation and Recycling 73, 53– 63

S.G.Shah, Shemal.V. Dave (2017). Utilization of Red Mud in Geopolymer Concrete-A Review. International Journal of Advance Engineering and Research Development. 4, 730-741

S Singha, S.N. Basavanagowdab, M. U. Aswathc, R. V. Ranganath. Durability of Bricks Coated with Red mud Based Geopolymer Paste. 2016 IOP Conf. Ser.: Mater. Sci. Eng. 149 012070. Available on May 2017: http://iopscience.iop. org/1757-899X/149/1/012070

S Rai, Dilip H. Lataye, M. J. Chaddha, et al., “An Alternative to Clay in Building Materials: Red Mud Sintering Using Fly Ash via Taguchi’s Methodology,” Advances in Materials Science and Engineering (2013) 7. doi:10.1155/2013/757923

R. K. Paramguru , P. C. Rath & V. N. Misra. (2004) Trends In Red Mud Utilization – A Review. Mineral Processing and Extractive Metallurgy Review. 26, 1-29

R. Diaz and H. Barros (2017). Method for Gamma Spectrometry efficiency calibration for several matrix (in Spanish). Diploma Thesys. Physics Department. Simon Bolivar University. Venezuela.

Mazzilli, B., Palmiro, V., Saueia, C., & Nisti, M. B. (2000). Radiochemical characterization of Brazilian phosphogypsum. Journal of Environmental Radioactivity, 49, 113-122.

Rutherford, P. M.; Dudas, M. J.; Samek, R. A. (1994) Environmental impacts of phosphogypsum. Science of the Total Environment. 149, 1–2. 1–38.

J.M. Abril., R. García Tenorio., & G. Manjón. (2009). Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate. J. Haz. Mat, 164, 790e797.

Mas, J. L.; San Miguel, E. G.; Bolívar, J. P.; Vaca F.; Pérez-Moreno J. P. (2006). An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain. Sci. Total Environ. 364, pp. 55–66.

Olszewska, W.,M. (1995). Estimates of the occupational radiological hazard in phosphate fertilizers industry in Poland. Radiation Protection Dosimetry, 58, 269–276.

Piedecausa, B., (2011). Radioactividad natural de los materiales de construcción Aplicación al hormigón. Parte I. Radiación externa: Índice de riesgo radioactivo. Revista Técnica CEMENTO HORMIGÓN, N° 945, Agosto 2011. ISSN:00088919. pp. 40–65.

Attar, L. A., Al-Oudat, M., Kanakri, S., Budeir, Y., Khalily, H., & Hamwi, A. A. (2011). Radiological impacts of phosphogypsum. Journal of Environmental Management, 92, 2151–2158.

Ahmed, N.,K. (2005). Measurement of natural radioactivity in building materials in Qena city, Upper Egypt. Journal of Environmental Radioactivity, 83, 91–99.

El Afifi, E. M.; Hilal, M. A.; Attallah, M. F.; El-Reefy, S. A. (2009). Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J. Environ Radioact. 100, pp. 407–412.

S.K. Sahu, P.Y. Ajmal, R.C. Bhangare, M. Tiwari, G.G. Pandit (2014). Natural radioactivity assessment of a phosphate fertilizer plant area. Journal of Radiation Research and Applied Sciences 7, 123–128.

Burnett, W. C. Schultz, M. K.; Carter, D. H. (1996). Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate. J. Environ Radioact. 32, 1–2, pp. 33–51.

Pinnock W.R. (1991). Measurements of Radioactivity in Jamaican Building Materials and gamma dose equivalents in a prototype red mud house. Heal. Phys. 61–5, 647–651.

World Aluminum. (2015) Bauxite Residue Management: Best Practice Web site (visited january 2017) http://bauxite.world-aluminium.org/home/

Beretka, J. and Mathew, P. (1985). Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Physics, 48, 87–95.

Cooper. M. B. (2005). Naturally Occurring Radioactive Materials (NORM) in Australian Industries. Review of Current Inventories and Future Generation. EnviroRad Services Pty. Ltd. (ERS-006)

B.H. O’Connor (2004). Public submission prepared for Alcoa World Alumina Australia http://analizebasilicata.altervista.org/blog/wp-content/uploads/2016/10/NORM-Australia.pdf

J. Somlai, V.Jobbagy, J. Kovacs, S. Tarjan, T. Kovacs. (2008). Radiological aspects of the usability of red mud as building material additive. Journal of Hazardous Materials. 150, 541–545.

H. Gu, N. Wang and S. Liu. (2012). Radiological restrictions of using red mud as building material additive. Waste Management & Research 30(9), 961–965.

V. Cuccia, A. H. de Oliveira and Z. Rocha. (2011). Radionuclides in Bayer process residues: previous analysis for radiological protection. 2011 International Nuclear Atlantic Conference - INAC 2011. ISBN: 978-85-99141-04-5. (7 pages).

L. D. Hai, N. M. Khai, T. V. Quy and N. X. Huan (2014). Material composition and properties of red mud coming from alumina processing plant Tanrai, Lamdong, Vietnam. International Journal of Research In Earth & Environmental Sciences. 1, 6. 7.

Milačič R, Zuliani T, Ščančar J. (2012) Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Sci Total Environ. 426, 359–365. doi: 10.1016/j.scitotenv.2012.03.080.

How to Cite
H. Barros; G. Espinosa; W. Rodriguez; L. Sajo-Bohus. Radon Exhalation from Industrial Residues As Suitable Additives for Building Materials . J. Nucl. Phy. Mat. Sci. Rad. A. 2017, 5, 113-125.