Effects of Low-Energy Laser Irradiation on Sperm Cells Dynamics of Rabbit (Oryctolagus Cuniculus)

Authors

  • J. M. De Jesus-Miranda Laboratorio de Biofísica Molecular de la Facultad de Ciencias. Universidad Autónoma del Estado de México
  • L. A. Mandujano Laboratorio de Diseño y Modelado Biofísico Molecular de la Universidad Mexiquense S. C.
  • F. Mendez Laboratorio de Ecofisiología Animal de la Facultad de Ciencias. Universidad Autónoma del Estado de México
  • Y. J. Castillo Laboratorio de Biofísica Molecular de la Facultad de Ciencias. Universidad Autónoma del Estado de México.
  • J. Mulia Laboratorio de Biofísica Molecular de la Facultad de Ciencias. Universidad Autónoma del Estado de México.
  • C. Garcia Laboratorio de Biología de la Reproducción de la Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México
  • Y. E. Felipe Laboratorio de Biología de la Reproducción de la Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma del Estado de México
  • D. Osorio-Gonzalez Laboratorio de Biofísica Molecular de la Facultad de Ciencias. Universidad Autónoma del Estado de México.

DOI:

https://doi.org/10.15415/jnp.2017.51018

Keywords:

sperm motility, photo-biostimulation

Abstract

Infertility is a world disease in which a couple is unable to achieve pregnancy. There are numerous parameters to determinate fertility; nevertheless, sperm motility is by consensus one of the most important attributes to evaluate male fertility. Contributions to a better understanding of this crucial parameter are imperative; hence, the aim of this investigation was to assess the effect of low-energy laser irradiation on sperm cell dynamics in thawed samples that were cryopreserved. We used a 405 nm blue laser beam to irradiate spermatic cells from rabbit inside a temperature-controlled dispersion chamber at 37 °C; then, we applied an image recognizing system to calculate individual sperm trajectories and velocities. We found that sperms raise its motility after irradiation suggesting that λ=405 nm is an optimal wavelength for spermatic photo-stimulation.

Downloads

Download data is not yet available.

References

Abdel-Salam, Z. y M.A. Harith. (2015). Laser researches on livestock semen and oocytes: A Brief Review. Journal of Advanced Research. 6, 311–317

Agarwal, A., Saleh, R.A. and M.A. Bedaiwy. (2003). Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 79(4), 829–843

Anderson, M.J., and Dixson, A.F. (2002). Sperm competition Motility and the midpiece in primates. Nature, 416, 496

Beltrán, K., de Jesús-Miranda, J.M., Castro, J.A., Mandujano-Rosas, L.A., Paulín-Fuentes, J.M. y D. Osorio-González. (2016). Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems. JNPMSRA. 4(1), 49–57

Carrel, D., and Patterson, M. (2010). Reproductive Endocrinology and Infertility: Integrating Modern Clinical and Laboratory Practice. Springer. 375 p

Castilla, J.A., Morancho-Zaragoza, J., Aguilar, J., Prats-Gimenez, R., Gonzalvo, M.C., Fernández-Pardo, E., Álvares, C., Calafell, L., and L. Martinez. (2005). Qualitymspecifications for seminal parameters based on the state of the art. Hum Reprod. 20(9), 2573–2578

Ebner, T., Moser, M., and Tews, G. (2005). Possible applications of a noncontact 1.48 lm wavelength diode laser in assisted reproduction technologies. Hum. Reprod. Update 11(4), 425–435.

Elia, J.,Imbrogno,N., Delfino, M., Mazzilli, R., Rossi, T. and F. Mazzili. (2010). The importance of the sperm motility classes-Future directions. Open Androl J. 2(1), 42–4 3.

Ferramosca, A., Provenzano, S.P., Coppola, L., and V. Sara. (2011). Mitochondrial Respiratory Efficiency is Positively Correlated With Human Sperm Motility. J Urology. 79(1), 809–814

Fritz, C.O., Morris, P.E. and J.J. Richler. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology: General; 141(1), 2–18.

Gadella, B.M., and C. Luna. (2014). Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 81(1), 74–84

Hartmann, R., Steiner, R., Hoffman, N., and R. Kaufmann. 1983. Human sperm motility: enhancement and inhibition measured by laser Doppler spectroscopy. Andrologia. 15(2), 120–134

Jensen, T.K., Jacobsen, R., Christensen, K., Nielsen, N.C. and E. Bostofte. 2009. Good Semen Quality and Life Expectancy: A Cohort Study of 43, 277 Men. Am J Epidemiol. 170(5), 559–65

Jeyendran, R.S. 2000. Interpretation of semen analysis results: A practical guide. Cambridge University Press. U.k.

Karu, T.I. 2012. Laser in Infertility Treatment: Irradiation on Oocytes and Spermatozoa. Photomed Laser Surg. 30(5), 239–241

Karu. T.I. 2010. Mithocondríal Mechanisms of Photobiomodulation in Context of New Data About Multiple Roles of ATP. Photomed Laser Surg. 28(2), 159–160

Kovac, J.R., Pastuszak, A.W. y D.J. Lamb. (2013). The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil. Steril. 99(4), 998–1007.

Lubart, R., Levinshal, T., Cohen, N., Friedmann, H., y H, Breitbart. (1996). Changes in Calcium Transport in Mammalian Sperm Mitochondria and Plasma Membrane due to 633 nm and 780 nm Irradiation. Laser. in der Medizin / Laser in Medicine, (Conference paper) 449–453

Menkveld, R. 2010. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian J Androl. 2010. 12(1), 47–58.

Montag, M., Rink, K., Delacretaz, G., and van der Ven, H. (2000). Laser-induced immobilization and plasma membrane permeabilization in human spermatozoa. Hum. Reprod. 15(4), 846–852

Mukai, C. and M. Okuno. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod. 71(2), 540–547

Passarella, S. y and T.I. Karu. (2014). Absorption of monochromatic and narrow band radiation in the visible and near-IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B. 140, 344–358

Pereira, R., Sá, R., Barros, A. and M. Sousa. (2017). Major regulatory mechanisms involved in sperm motility. Asian J Androl. 19(1), 5–14

Push., H.H. The Importance of Sperm Motility for the Fertilization of Human Oocytes in vivo and in-vitro. Andrologia. 19(5), 514–527

Tadir, Y., Neev, J., and Berns, M.W. 1992. Laser in assisted reproduction and genetics. J. Assist. Reprod. Genet. 9(4), 303–305

Tahmasbpour, E., Balasubramanian, D. and A. Agarwal. (2014). A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet. 31(9), 1115–1137.

Vogt, P.H. (2004). Molecular genetic of human male infertility: from genes to new therapeutic perspectives. Curr Pharm Des. 10(5), 471–500.

World Health Organization. (2010). WHO laboratory manual for the Examination and processing of human semen. 5th ed. World Health Organization

Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature, 168(4277), 697–698.

Yanagimachi, R. (1969). In vitro capacitation of hamster spermatozoa by follicular fluid. Journal of reproduction and fertility, 18(2), 275–286.

Kushibiki, T., Hirasawa, T., Okawa, S., & Ishihara, M. (2013). Blue Laser Irradiation Generates Intracellular Reactive Oxygen Species in Various Types of Cells. Photomedicine and Laser Surgery, 31(3), 95–104.

Kuroda, S., Yumura, Y., Mori, K., Yasuda, K., Takeshima, T., Kawahara, T. & Ikeda, M. (2016). Negative correlation between presence of reactive oxygen species and Sperm Motility Index in whole semen samples of infertile males. Revista Internacional de Andrología. http://dx.doi.org/10.1016/j.androl.2016.08.002

Downloads

Published

2017-08-07

How to Cite

(1)
De Jesus-Miranda, J. M. .; Mandujano, L. A. .; Mendez, F. .; Castillo, . Y. J. .; Mulia, J. .; Garcia, C. .; Felipe, Y. E. .; Osorio-Gonzalez, D. . Effects of Low-Energy Laser Irradiation on Sperm Cells Dynamics of Rabbit (Oryctolagus Cuniculus). J. Nucl. Phy. Mat. Sci. Rad. A. 2017, 5, 187-196.

Issue

Section

Articles