Stability of Aspartic Acid at 77°K under Gamma Radiation in a Comet Cores Simulation: Implications for Chemical Evolution Studies

Authors

  • A. L. Melendez-Lopez Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM.Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México; Programa de Maestría y Doctorado en Ciencias Químicas, UNAM.Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México
  • S. Ramos-Bernal Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM.Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México
  • A. Negron-Mendoza Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM.Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México

DOI:

https://doi.org/10.15415/jnp.2016.41020

Keywords:

comets, chemical evolution, aspartic acid, clay minerals, gamma radiation

Abstract

The synthesis of organic matter in a simulated primitive environment (terrestrial or extraterrestrial) has been widely studied. The stability of organic matter of biological significance, exposed to energy fields in primitive conditions, is equally important in the context of chemical evolution. We present a detailed analysis of the stability of prebiotic organic molecules under the effect of ionizing radiation at a low temperature, simulating a comet core. The laboratory simulation consists of icy phases of prototype organic matter and a mineral in a physical mixture. This chemical system was irradiated with gamma radiation at 77°K. The icy phases are methanol, formic acid, and aspartic acid in aqueous solution, in the presence of sodium montmorillonite as silicates surface.Our results show the stability of aspartic acid in this comet core simulation. We have been identified some radiolytic products of this mixture: ethylene glycol, glycolaldehyde, formamide, alanine, glycine and succinic acid. The products were identified by Gas Chromatography (GC) and High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). The protection role of the clay in the radiolysis of aspartic acid was observed in this mixture. This result may be due to an energy transfer from the clay. At pH=4, aspartic acid is adsorbed onto the clay at the interlayer channel as is shown in the X-ray diffractograms (XRD).

Downloads

Download data is not yet available.

References

Bar-Nun, A., & Chang, S. Photochemical reactions of water and carbon monoxide in Earth’s pri-mitive atmosphere. Journal of Geophysical Research, 88(C11), 6662–6672 (1983). http://dx.doi.org/10.1029/JC088iC11p06662

Colín, G. M., Negrón, M. A., & Ramos, B. S. Radiation chemistry approach to the study of ice analogs. Proceedings International Astronomical Union Symposium, 251, 447-448 (2008).

Cruz, C. A., Negrón, M. A., Frías, D., Colín, G. M., Heredia, A., Ramos, B. S., et al. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid. Journal of Radioanalytical and Nuclear Chemistry, (2014). doi:10.1007/s10967-014-3711-z http://dx.doi.org/10.1007/s10967-014-3711-z

Draganic, I. G., Draganic, Z. D., &Vujosevic, S. Some radiation–chemical aspects of chemistry in cometary nuclei.Icarus, 60(3), 464-475 (1984). http://dx.doi.org/10.1016/0019-1035(84)90156-8

Ehrenfreund P., &Charnley, S. B. Organic molecules in the interstellar medium, comets, and meteorites: A Voyage from Dark Clouds to the Early Earth. Annual Review of Astronomy and As-trophysics, 38, 427-483 (2000). http://dx.doi.org/10.1146/annurev.astro.38.1.427

Elsila, J. E., Glavin, P. D., & Dworkin, P. J. Cometary glycine detected in samples returned by Stardust. Meteoritics& Planetary Science, 44 (9), 1323–1330 (2009). http://dx.doi.org/10.1111/j.1945-5100.2009.tb01224.x

Evans, C. A., Meinert, C., Giri, C., Goesmannc, F., and Meierhenrich, U. J. Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chemical Society Reviews, (2012). doi: 10.1039/c2cs35051c http://dx.doi.org/10.1039/c2cs35051c

Goesmann, F., Rosenbauer, H., Bredehöft, J. H., Cabane, M., Ehrenfreund, P., Gautier, T., et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrome-try. Science, 349 (6247), 689-1 to 689-3 (2015).

Jørgensen, J. K., Favre, C., Bisschop, S. E., Bourke, T. L., Van Dishoeck, E. F., &Schmalzl, M. Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. The Astro-physical Journal Letters, 757 (1), 1-6 (2012). http://dx.doi.org/10.1088/2041-8205/757/1/l4

Meléndez, L. A. L, Ramos, B. S., and Ramírez, V. M. L. Stability of guanine adsorbed in a clay mineral under gamma irradiation at temperatures (77°Kand 298°K): Implications for chemical evolution studies. AIP Conference Proceedings, (2014). doi:10.1063/1.4890710 http://dx.doi.org/10.1063/1.4890710

Mu-oz, C. G. M., Meierhenrich, U. J., Schutte, W. A., Barbier, A., Arcones S. A., et al. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 416, 403-406, (2002). http://dx.doi.org/10.1038/416403a

Negrón, M. A.,&Ramos, B. S. Chemical Evolution in the Early Earth.In Astrobiology: Origins from the Big-Bang to Civilization, Kluwer Academic Publishers, (pp. 71-84). Venezuela: Caracas, (2000).

Negrón, M. A., & Ramos, B. S. The role of clays in the origin of life. In J. C. Flores, G. Lemarchand& J. Oró (Ed.), Kluwer Academic Publisher(pp. 183-194). Amsterdam, (2004).

Oró, J. Mechanism of synthesis of adenine from hydrogen cyanide under possible pri-mitive Earth conditions. Nature 191, 1193–1194, (1961). http://dx.doi.org/10.1038/1911193a0

Pizzarello, S., and Huang, Y. Molecular and isotopic analyses of Taghis Lake alkyl di-carboxylic acids.Meteoritics and Planetary Science, 37, 687-696, (2002). http://dx.doi.org/10.1111/j.1945-5100.2002.tb00848.x

Spinks, J.W.T.,&Woods, R. J. Introduction to Radiation Chemistry.New York, John Wiley and Sons, Inc., (1990).

Downloads

Published

2016-08-08

How to Cite

(1)
Melendez-Lopez, A. L.; Ramos-Bernal, S. .; Negron-Mendoza, A. Stability of Aspartic Acid at 77°K under Gamma Radiation in a Comet Cores Simulation: Implications for Chemical Evolution Studies. J. Nucl. Phy. Mat. Sci. Rad. A. 2016, 4, 191-201.

Issue

Section

Articles