Triton Scattering Phase-Shifts for S-wave using Morse Potential

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91014

Keywords:

n-d Scattering, Matrix Method, Phase Function Method (PFM), Variational Monte-Carlo (VMC), RK4,5 Method, Triton

Abstract

In this paper, the phase-shifts for neutron-dueteron (n-d) scattering have been determined using the molecular Morse potential as theoretical model of interaction. The Triton (n-d) 2S1/2 ground state initially has been chosen as -7.61 MeV to determine the model parameters using variational Monte-Carlo technique in combination with matrix methods numerical approach to solving the time independent Schrodinger equation (TISE). The obtained potential is incorporated into the phase function equation, which is solved using Runge-Kutta (RK) 4,5 order technique, to calculate the phaseshifts at various lab energies below 15 MeV, for which experimental data is available. The results have been compared with those obtained using another molecular potential named Manning-Rosen (MR) and have been observed to fare better. Finally, the Triton ground state has been chosen as its binding energy (BE), given by -8.481795 MeV, as determined from experimental atomic mass evaluation data and the calculations are repeated. It has been found that these phase-shifts from BE data are slightly better matched with experimental ones as compared to those obtained using -7.61 MeV ground state for Triton (n-d two-body system) modeled using Morse potential.

Downloads

Download data is not yet available.

References

R. Aaron et al., Physical Review 5B, 140 (1965). https://doi.org/10.1103/PhysRev.140.B1291

R. D. Amado, Annu Rev. Nucl. Sci. 19, 61 (1969). https://doi.org/10.1146/annurev.ns.19.120169.000425

M. Vallieres and Y. Nogamin, Revista Brasileira de Flsica 7, 3 (1977). http://www.sbfisica.org.br/bjp/download/v07/v07a32.pdf

B. Khirali et al., J. Phys. G. Nucl. Part. Phys. 46, 115104 (2019). https://doi.org/10.1088/1361-6471/ab4118

T. C. Lim, V. Z. Naturforsch 58a, 615 (2003). https://doi.org/10.1515/zna-2003-1104

D. Hestenes, American Journal of Physics 55, 440 (1987). https://doi.org/10.1119/1.15129

B. A. Jugdutt and F. Marsiglio, American Journal of Physics 81, 343 (2013). https://doi.org/10.1119/1.4793594

A. Sharma and O. S. K. S. Sastri, (2020). https://doi.org/10.35543/osf.io/5a6by

J. Bhoi and U. Laha, Brazilian Journal of Physics 46, 129 (2016). https://doi.org/10.1007/s13538-015-0388-x

A. K. Behera, J. Bhoi, U. Laha and B. Khirali, Communications in Theoretical Physics 72, 075301 (2020). https://orcid.org/0000-0003-4544-2358

F. Calogero, American Journal of Physics 36, 566 (1968). https://doi.org/10.1119/1.1975005

V. V. Babikov, Soviet Physics Uspekhi 10, 271 (1967). https://doi.org/10.1070/PU1967v010n03ABEH003246

G. Darewych and A. E. S. Green, Physical Review 164, 1324 (1967). https://doi.org/10.1103/PhysRev.164.1324

A. Khachi, L. Kumar and O. S. K. S. Sastri, Submitted in Proceedings of the Online International Conference on Theoretical Aspects of Nuclear Physics, (2021).

D. Huber, J. Golak, H. Witala, W. Gloeckle and H. Kamada, Few-Body Systems 19, 175 (1995). https://doi.org/10.1007/s006010050025

Downloads

Published

2021-08-31

How to Cite

(1)
Khachi, A.; Awasthi, S.; Sastri, O.; Kumar, L. . Triton Scattering Phase-Shifts for S-Wave Using Morse Potential. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 9, 81-85.

Issue

Section

Articles