Investigation for Suitable Target-Projectile combination for Fusion from the Isotopes of Ti and Nd using Intrinsic Fusion and Fission Barriers Analysis

Authors

  • Dalip Verma Department of Physics and Astronomical Science, Central University of Himachal Pradesh, Dharamshala, Kangra (H.P.)-176215, India
  • Kushmakshi . Department of Physics and Astronomical Science, Central University of Himachal Pradesh, Dharamshala, Kangra (H.P.)-176215, India
  • Monika Manhas Department of Physics, Government Nehru Degree College, Burhar, Madhya Pradesh - 484001, India

DOI:

https://doi.org/10.15415/jnp.2022.92022

Keywords:

Superheavy nuclei, Deformed and oriented nuclei, Intrinsic fusion barrier, fission barriers, belly-belly and tip-tip orientations

Abstract

Background: A configuration is most suitable for the fusion if it corresponds to a minimum intrinsic fusion barrier and maximum fission barrier.
Purpose: To find a suitable target-projectile combination from the isotopes of Ti and Nd by analyzing the intrinsic fusion and fission barriers theoretically by including the deformations up to hexadecapole order.
Methods: The fragmentation theory has been used for the calculations.
Results: The intrinsic fusion barrier is minimum and fission barrier is maximum for the targetprojectile combination: 43Ti+150Nd in belly-belly configuration, and the inclusion of deformation of higher order leads to the decrease of fission barrier for the prolate shaped cases and compactness for most of the cases.
Conclusions: The most suitable target-projectile combination from the isotopes of Ti and Nd for the fusion is 43Ti+150Nd.

Downloads

Download data is not yet available.

References

R. K. Gupta, M Balasubramaniam, R. Kumar, et al., J. Phys. G: Nucl. Part. Phys. 31, (2005) 631.

Himanshu Sharma and Dalip Singh Verma, DAE Symp. on Nucl. Phys. 63 (2018) 494-495.

P. Möller, A.J. Sierk, T. Ichikawa, et al., Atomic and Nuclear Data Table 109-110 (2016) 1-204.

A. Nasirov, A. Fukushima, Y. Toyoshima, et al., Nucl. Phys. A 759 (2005) 342-369.

Săndulescu A, Gupta RK, Scheid W, Greiner W, Phys Lett. B 60 (3) (1976) 225-228.

R. K. Gupta, M. Balasubramaniam, G. Münzenberg, et al.,, J Phys G: Nucl Part Phys 27, (2001) 867-881.

N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller, Y. Tzeng, Nucl Phys A 570 c (1994) 61-68.

P.A. Seeger, Nucl. Phys. 25 (1961) 1–135.

W. D. Myers, W. J. Swiatecki, Nucl Phys 81, (1966) 1-60.

M. Wang, G. Audi, F.G. Kondev, et al., Chin.Phys C 41, (2017) 030003.

Dalip Singh Verma and Kushmakshi, J. Radioanal. Nucl. Chem. 322, (2019)139–146.

J. Blocki, J. Randrup, W.J. Swiatecki and C.F. Tsang, Ann. Phys. 105, 427–462 (1977).

R. K. Gupta, N. Singh, and M. Manhas, Phys. Rev. C 70, (2004) 034608.

R. K. Gupta, M. Manhas, and W. Greiner Phys. Rev. C 73, (2006) 054307.

Downloads

Published

2022-06-20

How to Cite

(1)
Verma, D.; ., K.; Manhas, M. Investigation for Suitable Target-Projectile Combination for Fusion from the Isotopes of Ti and Nd Using Intrinsic Fusion and Fission Barriers Analysis. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 145-149.

Issue

Section

Conf_Articles