Deformation Effect on Proton Bubble Structure in N = 28 Isotones

Authors

  • Pankaj Kumar Himachal Pradesh University
  • Virender Thakur Department of Physics, Himachal Pradesh University, Shimla-171005, India
  • Smriti Thakur Department of Physics, Himachal Pradesh University, Shimla-171005, India
  • Raj Kumar Department of Physics, Himachal Pradesh University, Shimla-171005, India
  • Shashi K Dhiman Department of Physics, Himachal Pradesh University, Shimla-171005, India

DOI:

https://doi.org/10.15415/jnp.2022.92025

Keywords:

Covariant density functional, Pairing correlations, Quadrupole deformation, Bubble structure, Internal density

Abstract

Purpose: To study the effect of nuclear deformation on proton bubble structure of N = 28 isotones and and compare it with the spherical limits. The reduction of depletion fraction due to deformation can be explained by studying the relative differences in the central densities.
Methods: In this work, we have employed relativistic Hartree-Bogoliubov (RHB) model with
density-dependent meson-exchange (DD-ME2) interaction and separable pairing interaction. We have performed axially constrained calculations to investigate the deformed proton bubble structure in 40Mg, 42Si, 44S, and 46Ar, isotones of N = 28 shell closure.
Results: We have observed that the nuclear deformation play againsts the formation of bubble structure. In the spherical limits, the isotones of N = 28 shell closure have pronounced bubble structure with large value of depletion fraction. But, the increase in deformation leads to the disappearance of bubble structure. The internal densities in deformed nuclei are found to increase with deformation which can be related to the decrease in depletion fraction.
Conclusion: By using RHB model, we have investigated the ground state and proton bubble structure of N = 28 isotones. In 44S, and 46Ar, the 2s1/21d3/2 states get inverted due to the weakning of spin-orbit strength. Due to strong dynamical correlations, arising from deformation, the central depletion of proton density is greatly affected in these isotones. The decrease in depletion fraction can be related to increase in the internal density due to deformation

Downloads

Download data is not yet available.

References

HA Wilson. Physical Review , 69(9-10):538, 1946. https://doi.org/10.1103/PhysRev.69.538

X Campi and DWL Sprung. Physics Letters B , 46(3):291-295, 1973.

https://doi.org/10.1016/0370-2693(73)90121-4

JM Cavedon, B Frois, D Goutte, M Huet, Ph Leconte, CN Papanicolas, X-H Phan, SK Platchkov, S Williamson, W Boeglin, et al. Physical Review Letters , 49(14):978, 1982.

https://doi.org/10.1103/PhysRevLett.49.978

E Khan, M Grasso, J Margueron, and Nguyen Van Giai. Nuclear Physics A , 800(1-

:37-46, 2008. https://doi.org/10.1016/j.nuclphysa.2007.11.012

M Grasso, L Gaudefroy, E Khan, Tamara Niki¢, J Piekarewicz, O Sorlin, Nguyen

Van Giai, and Dario Vretenar. Physical Review C , 79(3):034318, 2009.

https://doi.org/10.1103/PhysRevC.79.034318

YZ Wang, JZ Gu, XZ Zhang, JM Dong, et al. Physical Review C , 84(4):044333, 2011.

https://doi.org/10.1103/PhysRevC.84.044333

JM Yao, Hua Mei, and ZP Li. Physics Letters B , 723(4-5):459-463, 2013.

https://doi.org/10.1016/j.physletb.2013.05.049

Thomas Duguet, Vittorio Somà, Simon Lecluse, Carlo Barbieri, and P Navrátil.

Physical Review C , 95(3):034319, 2017.

https://doi.org/10.1103/PhysRevC.95.034319

G Saxena, M Kumawat, M Kaushik, SK Jain, and Mamta Aggarwal. Physics Letters

B , 788:1-6, 2019. https://doi.org/10.1016/j.physletb.2018.08.076

J Dechargé, J- F Berger, K Dietrich, and MS Weiss. Physics Letters B , 451(3-4):275-

, 1999. https://doi.org/10.1016/S0370-2693(99)00225-7

A V Afanasjev and S Frauendorf. Physical Review C , 71(2):024308, 2005.

https://doi:10.1103/PhysRevC.71.024308

Michael Bender and Paul-Henri Heenen. In Journal of Physics: Conference Series ,

volume 420, page 012002. IOP Publishing, 2013.

https://doi.org/10.1088/1742-6596/420/1/012002

A Mutschler, A Lemasson, O Sorlin, D Bazin, C Borcea, R Borcea, Z Dombrádi,

J-P Ebran, A Gade, H Iwasaki, et al. Nature Physics , 13(2):152-156, 2017.

https://doi.org/10.1038/nphys3916

G Saxena, M Kumawat, BK Agrawal, and Mamta Aggarwal. Physics Letters B , 789:323-328, 2019. https://doi.org/10.1016/j.physletb.2018.10.062

X Y Wu, J M Yao, Z P Li, et al. Physical Review C , 89(1):017304, 2014.

https://doi.org/10.1103/PhysRevC.89.017304

A Shukla and Sven Åberg. Physical Review C , 89(1):014329, 2014.

https://doi.org/10.1103/PhysRevC.89.014329

Pankaj Kumar, Virender Thakur, Vikesh Kumar, and Shashi K Dhiman. The Eu-

ropean Physical Journal Plus , 136(10):1-11, 2021.

https://doi.org/10.1140/epjp/s13360-021-02036-0

Pankaj Kumar, Virender Thakur, Smriti Thakur, Vikesh Kumar, and Shashi K Dhiman. Acta Physica Polonica B , 52(5), 2021. https://doi.org/10.5506/APhysPolB.52.401

Bastian Schuetrumpf, Witold Nazarewicz, and P-G Reinhard. Physical Review C ,

(2):024306, 2017. https://doi.org/10.1103/PhysRevC.96.024306

J Meng, H Toki, JY Zeng, SQ Zhang, and S-G Zhou. Physical Review C , 65(4):041302, 2002.

https://doi.org/10.1103/PhysRevC.65.041302

Pankaj Kumar, Virender Thakur, Smriti Thakur, Vikesh Kumar, and Shashi K Dhiman. The European Physical Journal A , 57(1):1-13, 2021.

https://doi.org/10.1140/epja/s10050-021-00346-6

GA Lalazissis, Tamara Nik2i¢, Dario Vretenar, and Peter Ring. Physical Review C ,

(2):024312, 2005.

https://doi.org/10.1103/PhysRevC.71.024312

GA Lalazissis. Progress in Particle and Nuclear Physics , 59:277-284, 2007.

https://doi.org/10.1016/j.ppnp.2006.12.028

S Typel and HH Wolter. Nuclear Physics A , 656(3-4):331-364, 1999.

https://doi.org/10.1016/S0375-9474(99)00310-3

Ferdinand Hofmann, CM Keil, and H Lenske. Physical Review C , 64(3):034314, 2001.

https://doi.org/10.1103/PhysRevC.64.034314

F De Jong and H Lenske. Physical Review C , 57(6):3099, 1998.

https://doi.org/10.1103/PhysRevC.57.3099

Yuan Tian, Zhong-Yu Ma, and P Ring. Physics Letters B , 676(1-3):44-50, 2009.

https://doi.org/10.1016/j.physletb.2009.04.067

Tamara Nik2i¢, Peter Ring, Dario Vretenar, Yuan Tian, and Zhong-yu Ma. Physical

Review C , 81(5):054318, 2010. https://doi.org/10.1103/PhysRevC.81.054318

Tamara Nik2i¢, Nils Paar, Dario Vretenar, and Peter Ring. Computer physics com-

munications , 185(6):1808-1821, 2014. https://doi.org/10.1016/j.cpc.2014.02.027

Yuan Tian, Zhong-Yu Ma, and Peter Ring. Physical Review C , 79(6):064301, 2009.

https://doi.org/10.1103/PhysRevC.79.064301

GA Lalazissis, Dario Vretenar, Peter Ring, M Stoitsov, and LM Robledo. Physical

Review C , 60(1):014310, 1999.

https://doi.org/10.1103/PhysRevC.60.014310

O Sorlin. Nuclear Physics A , 834(1-4):400c-403c, 2010.

https://doi.org/10.1016/j.nuclphysa.2010.01.049

ZP Li, JM Yao, Dario Vretenar, Tamara Nik2i¢, H Chen, and Jie Meng. Physical

Review C , 84(5):054304, 2011. https://doi.org/10.1103/PhysRevC.84.054304

J Dechargé, J-F Berger, M Girod, and K Dietrich. Nuclear Physics A , 716:55-86, 2003.

https://doi.org/10.1016/S0375-9474(02)01398-2

Wataru Horiuchi and Tsunenori Inakura. Progress of Theoretical and Experimental

Physics , 2021(10):103D02, 2021. https://doi.org/10.1093/ptep/ptab087

Downloads

Published

2022-06-20

How to Cite

(1)
Kumar, P. .; Thakur, V. .; Thakur, S. .; Kumar, R. .; Dhiman, S. K. . Deformation Effect on Proton Bubble Structure in N = 28 Isotones. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 169-175.

Issue

Section

Conf_Articles