Radiochemical Separation and Measurement by Mass Spectrometry with Magnetic Sector with Inductively Coupled Plasma source (ICP-SFMS) of Plutonium Isotopes in Soil Samples

Authors

  • C. O. Torres-Cortes Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca S/N, La Marquesa, Ocoyoacác, Edo. de México, C. P. 52750, México.; Unidad Académica en Estudios Nucleares de la Universidad Autónoma de Zacatecas. C. Ciprés 10, Peñuela, Zacatecas, Zac. C.P. 98068, México.
  • H. Hernandez-Mendoza Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca S/N, La Marquesa, Ocoyoacác, Edo. de México, C. P. 52750, México.
  • H. R. Vega-Carrillo Unidad Académica en Estudios Nucleares de la Universidad Autónoma de Zacatecas. C. Ciprés 10, Peñuela, Zacatecas, Zac. C.P. 98068, México.
  • E. T. Romero-Guzman Instituto Nacional de Investigaciones Nucleares. Carretera México-Toluca S/N, La Marquesa, Ocoyoacác, Edo. de México, C. P. 52750, México.

DOI:

https://doi.org/10.15415/jnp.2016.41014

Keywords:

Plutonium isotopes, Radiochemical separation, Soil, ICP-SFMS

Abstract

The aim of this work is twofold: to optimize the radiochemical separation of Plutonium (Pu) from soil samples, and to measure the Pu concentration. Soil samples were prepared using acid digestion assisted by microwaves; then, Pu purification was carried out with Pu AG1X8 resin. Pu isotopes were measured using Mass Spectrometry with Magnetic Sector with Inductively Coupled Plasma source (ICP-SFMS). In order to reduce the interference due to the presence of 238UH+ in the samples a desolvation system (Apex) was used. The limit of detection (LOD) of Pu was determined. The efficiency of Pu recovery from soil samples varies from 70 to 93%.

Downloads

Download data is not yet available.

References

Chamizo, E., Jiménez, M.C., Wacker, L., Vioque, I., Calleja, A. & García, M. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry. Analytica Chimica Acta, 606(2), 239–245 (2008). http://dx.doi.org/10.1016/j.aca.2007.11.005

Choppin, G. R. Actinide Science: Fundamental and Environmental Aspects. Journal of Nuclear and Radiochemistry Sciences, 6(1), 1-5 (2005). http://dx.doi.org/10.14494/jnrs2000.6.1

Cizdziel, J. V., Ketterer, M. E., Farmer, D., Faller, S. H. & Hodge, V. F. 239, 240, 241Pu fingerprinting of plutonium in western US soils using ICPMS: solution and laser ablation measurements. Analyti-cal Bioanalytical Chemistry, 390(2), 521-530 (2008). http://dx.doi.org/10.1007/s00216-007-1741-x

Greis, C., Karlsson, S., Düker, A., Pettersson, H. & Allard, B. Determination of plutonium in envi-ronmental samples with quadrupole ICP-MS.Radioanalytical and Nuclear Chemistry, 275(1), 55-70 (2008). http://dx.doi.org/10.1007/s10967-006-7004-z

Lariviere, D., Vivien, F., Taylor, V. F., Douglas, R., Evans, R. D. & Cornett, R. Radionuclide de-termination in environmental samples by inductively coupled plasma mass spectrometry. Journal Spectrochimica Acta Part B, 61(8), 877-904 (2006). http://dx.doi.org/10.1016/j.sab.2006.07.004

Lee, C., Suzuki, Esaka, D. F., Magara, M. & Song, K. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation. Ta-lanta, 141, 92-96 (2015). http://dx.doi.org/10.1016/j.talanta.2015.03.060

Levine, C. A. & Seaborg, G. T.The occurrence of plutonium in nature. Journal American Chemical Society, 73(7), 3278-3283 (1951). http://dx.doi.org/10.1021/ja01151a085

Nygren, U. Ph. D., Determination of actinides using ICP-SFMS, Lule. University of Tech-nology, (2006).

Organismo Internacional de Energía Atómica. Reglamento para el transporte seguro de materiales radiactivos, 1-187 (2010).

S. Gil, and E. Rodríguez. Normas generales para usar sustancias radiactivas, 1-2 (2001). doi: http://materias.df.uba.ar/labo5Ba2013c2/files/2013/08/Normasgenerales-para-usar-sustancias-radiactivas.pdf, Accesed 1 June 2016

Seaborg, G. T. El primer reactor nuclear, la producción de plutonio y su extracción por métodos químicos, 15-17. doi: https://www.iaea.org/sites/default/ files/04004701517su_es.pdf, Accesed 1 April 2016.

Varga, Z., Surányi, G., Vajda, N. & Stefánka, Z. Determination of plutonium and americium in en-vironmental samples by inductively coupled plasma sector field mass spectrometry and alpha spec-trometry.Journal Microchemistry, 85(1), 3945 (2007). http://dx.doi.org/10.1016/j.microc.2006.02.006

Zhongtang, W., Guosheng, Y., Jian, Z., Liguo, C., Haijun, Y.,Yanbei, Z., Keiko, T. &Shigeo, U. Effect of Ashing Temperature on Accurate Determination of Plutonium in Soil Samples. Analytical Chemistry, 87(11), 5511-5515 (2015). http://dx.doi.org/10.1021/acs.analchem.5b01472

Downloads

Published

2016-08-08

How to Cite

(1)
Torres-Cortes, C. O. .; Hernandez-Mendoza, H. .; Vega-Carrillo, H. R.; Romero-Guzman, E. T. . Radiochemical Separation and Measurement by Mass Spectrometry With Magnetic Sector With Inductively Coupled Plasma Source (ICP-SFMS) of Plutonium Isotopes in Soil Samples. J. Nucl. Phy. Mat. Sci. Rad. A. 2016, 4, 139-148.

Issue

Section

Articles