Correlation Between Underground Radon Gas and Dormant Geological Faults

Authors

  • J. A. Lopez Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A.
  • O. Dena Ornelas Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México
  • L. Sajo-Bohus Universidad Simón Bolívar, Caracas, YV-1080ª Venezuela
  • G. Rodriguez Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A.
  • I. Chavarria Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A.

DOI:

https://doi.org/10.15415/jnp.2016.41025

Keywords:

radon, faults, dilatancy-diffusion theory

Abstract

This work studies the concentration of radon in soil around a fault in the East Franklin Mountains in the El Paso area in West Texas. It is found that the in-soil production of radon is correlated to the existence of a fault even if it has not had any recorded activity in recent geological times. This adds to previous observations that link the production of radon to seismic activity, and seems to indicate that in non-active faults the radon production is due mainly to the radioactivity of the top soil and to the transport properties of the medium and not to deeper seismic activity. These results open the possibility of using in-soil radon gas concentrations as an examination tool of dormant faults.

Downloads

Download data is not yet available.

References

Al-Bataina, B.A., Al-Taj, M.M., Atallah, M.Y. Relation between radon concentrations and mor-photectonics of the Dead Sea transform in Wadi Araba, Jordan. Radiat. Meas. 40(2–6), 539–543 (2005). http://dx.doi.org/10.1016/j.radmeas.2005.06.023

Ávila, V. M. An investigation of the Seismic Hazards of the El Paso-Juarez region: The nature and extent of the southern east Flanklin Mountains Fault Zone. M.S. Thesis. University of Texas at El Paso. 75 pp (2011). http://digitalcommons.utep.edu/dissertations/AAI1494329. Accesses 26 May 2016.

Avila, V.M., Doser, D.I., Dena, O.S., Moncada, M., and Marrufo-Cannos, S.S. Using geophysical techniques to trace active faults in the urbanized northern Hueco Bolson, West Texas, USA, and northern Chihuahua, Mexico. Geosphere 11(6), 1-17 (2015).

Baubron, J.-C., Rigo, A., Toutain, J.-P. Soil gas profiles as a tool to characterize active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth Planet. Sci. Lett. 196(1–2), 69–81 (2002). http://dx.doi.org/10.1016/S0012-821X(01)00596-9

Burton M., Neri, M., Condarelli, D. High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys. Res. Lett. 31(7), 1–4 (2004). http://dx.doi.org/10.1029/2003gl019181

Collins, E.W., and Raney, J.A. Tertiary and Quaternary structure and paleotectonics of the Hueco basin, trans-Pecos Texas and Chihuahua, Mexico. The University of Texas at Austin, Texas Bureau of Economic Geology Geological Circular 91(2), 44 (1991).

Dena, O.S. Estudios geofísicos de gravedad, magnetometría y zonación de Riesgo Sísmico por el método de ondas superficiales en la región norte del estado de Chihuahua. Final Internal Report. Universidad Autónoma de Ciudad Juárez. 199 pp (2012).

Figuers, R.H. Structural geology and geophysics of the Pipeline Complex, Northern Franklin Mountains, El Paso, Texas. M.S. Thesis, University of Texas at El Paso. 185 pp (1987). http://digitalcommons.utep.edu/dissertations/AAI8729914/. Accessed 26 May 2016.

Han, X., Li, Y., Du, J., Zhou, X., Xie, C., et al. Soil gas Rn and CO2 geochemistry in the capital area of China. Nat. Hazards Earth Syst. Sci., 14, 2803–2815 (2014). http://dx.doi.org/10.5194/nhess-14-2803-2014

Inceoz, M., Baykara, O., Aksoy, E., Dogru, M. Measurements of soil gas radon in active fault systems: a case study along the North and East Anatolian fault systems in Turkey. Radiat. Meas. 41(3), 349–353 (2006). http://dx.doi.org/10.1016/j.radmeas.2005.07.024

Ioannides, K., Papachristodoulou, C., Stamoulis, K., Karamanis, D., Pavlides, S. et al. Soil gas radon: a tool for exploring active fault zones. Appl. Radiat. Isot. 59, 205–213 (2003). http://dx.doi.org/10.1016/S0969-8043(03)00164-7

Israël, H., Björnsson, S. Radon 222Rn and thoron 220Rn in soil air over faults. Zeit. Geophysik. 33, 48–64, (1966).

Keaton, J. R., and Barnes, J. R. Paleoseismic evaluation of the East Franklin Mountains fault, El Paso, Texas. Technical report to U. S. Geological Survey, contract 1434-94G-2389 (1995).

Kemski, J., Klingel, R., Schneiders, H., Siehl, A., Wiegand, J. Geological structure and geo-chemistry controlling radon in soil gas. Radiat. Prot. Dosim. 45(1/4), 235–239 (1992).

Koike, K., Yoshinaga, T., Ueyama, T. and Asaue, H. Increased radon-222 in soil gas because of cumulative seismicity at active faults, Earth. Planets and Space 66, 57 (2014). http://dx.doi.org/10.1186/1880-5981-66-57

Machette, M.N. Preliminary assessment of paleoseismicity at White Sands Missile Range, southern New Mexico—Evidence for recency of faulting, fault segmentation, and repeat intervals for major earthquakes in the region. U.S. Geological Survey Open-File Report 87(444), 46. (1987).

McCalpin, J.P. (2006). Quaternary faulting and seismic source characterization in the El Pa-so-Juarez metropolitan area; Collaborative research with the University of Texas at El Paso, Program Element II: Evaluate Urban Hazard and Risk. Unpublished Final Technical Report submitted to U.S. Geological Survey by GEO-HAZ Consulting, Inc., Contract 03HQGR0056. 68 pp. http://earthquake.usgs.gov/research/external/reports/03HQGR0056.pdf. Accesses 26 May 2016.

Moncada, M. G. Estudios geofísicos y geológicos para recarga de acuíferos en la zona norte del estado de Chihuahua. B.S. Thesis. Universidad Autónoma de Ciudad Juárez, 150 pp (2011).

Richon, P., Klinger Y., Tapponnier, P., Li, C.X., Van Der Woerd, et al.. Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges. Rad. Meas. 45, 211-218 (2010). http://dx.doi.org/10.1016/j.radmeas.2010.01.019

Rodriguez, G. A study of radon emission around an East Franklin Mountain Fault in El Paso, Texas. M.S. Thesis, University of Texas at El Paso. In preparation.

Scholz C. H., Sykes, L. R. and Aggarwal Y. P. Earthquake prediction: A physical basis. Science, 181, 803–810, 1973. http://dx.doi.org/10.1126/science.181.4102.803

Tansi, C., Tallarico, A., Iovine, G., Folino Gallo, M. and Falcone, G. Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the south-eastern Crati Graben (Northern Calabria, Italy). Tectonophysics 396 (3–4), 181–193 (2005). http://dx.doi.org/10.1016/j.tecto.2004.11.008

Wells, D.L. and Coppersmith, K.J. Empirical relationships among magnitude, rupture length, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974-1002 (1994).

Downloads

Published

2016-08-08

How to Cite

(1)
Lopez, J. A. .; Dena Ornelas, O. .; Sajo-Bohus, L. .; Rodriguez, G. .; Chavarria, I. . Correlation Between Underground Radon Gas and Dormant Geological Faults. J. Nucl. Phy. Mat. Sci. Rad. A. 2016, 4, 265-275.

Issue

Section

Articles