Phase Shift Analysis for Neutron-Alpha Elastic Scattering Using Phase Function Method with Local Gaussian Potential

Authors

  • Lalit Kumar Central University of Himachal Pradesh
  • Anil Khachi https://orcid.org/0000-0002-6975-7357
  • Prof. O.S.K.S Sastri https://orcid.org/0000-0003-1405-5283,https://orcid.org/0000-0003-1405-5283

DOI:

https://doi.org/10.15415/jnp.2022.92032

Keywords:

n-α scattering, Phase Function Method (PFM), Gaussian potential, cross-section

Abstract

Background: The nucleon-nucleus scattering has been studied using Gaussain potential with
spin-orbit term of Thomas type to fit the experimental scattering phase shifts (SPS). Recently,
Hulthen potential without spin-orbit term has been utilised for studying α–nucleon scattering with phase function method (PFM).
Purpose: The main objectives of this paper are:
1. To obtain the best possible interaction potentials that best describe the neutron-α elastic
SPS in various channels.
2. To compute the partial cross-sections for scattering p-states and the total cross-section for
the reaction.
Methods: The local interaction potential is modeled using Gaussian function. The non-local
spin orbit term is chosen to be proportional to derivative of local potential. The phase function method has been numerically solved using 5th order Runge-Kutta method to compute the SPS. The model parameters are varied in an iterative fashion to minimise the mean absolute percentage error (MAPE) w.r.t. the experimental SPS.
Results:
1. The SPS for S, P and D channels have been obtained with MAPE values less than 3%.
2. The partial cross-sections for p 1/2 and p 3/2 have been plotted and the respective resonance energies and FWHM have been found to be in reasonable agreement with values in literature.
3. The total cross-section for the reaction has been determined and found to be matching well with experimental findings.
Conclusions: Gaussian potential with associated spin-orbit term has been shown to be a
reasonably good choice for explaining the n-α scattering reaction.

Downloads

Download data is not yet available.

Author Biographies

Anil Khachi, https://orcid.org/0000-0002-6975-7357

Research Scholar at Central University of Himachal Pradesh

Prof. O.S.K.S Sastri, https://orcid.org/0000-0003-1405-5283,https://orcid.org/0000-0003-1405-5283

Prof. of Physics, DPAS, Central University of Himachal Pradesh

References

T.A. Tombrello and G.C. Phillips, Nucl. Phys., 20, 648-662, (1960).

https://doi.org/10.1016/0029-5582(60)90204-2

A.N. Mitra, V.S. Bhasin and B.S. Bhakar, Nuclear Physics (Netherlands) Divided into Nucl.

Phys. A and Nucl. Phys. B, 38, 316-321, (1962).

https://doi.org/10.1016/0029-5582(62)91037-4

E. van der Spuy, Nucl. Phys., 8, 381-414 (1956).

https://doi.org/10.1016/S0029-5582(56)80056-4

H. Kanada, S. Naagata, S. Otsuki, and Y. Sumi, Prog. Theor. Phys., 30, 475-493, (1963).

https://doi.org/10.1143/PTP.30.475

P.E. Hodgson, Adv. Phys., 25, 1-39, (1958).

https://doi.org/10.1080/00018735800101157

C.L. Critchfield and D.C. Dodder, Phys. Rev., 76, 602, (1949).

https://doi.org/10.1103/PhysRev.76.602

J.L. Gammel and R.M. Thaler, Phys. Rev., 109, 2041, (1958).

https://doi.org/10.1103/PhysRev.109.2041

L. Brown, W. Haeberli and W. Tr ¨ achslin, Nucl. Phys. A, 90, 339-352, (1967).

https://doi.org/10.1016/0375-9474(67)90238-2

A. Houdayer et al., Phys. Rev. C, 18, 1985, (1978).

https://doi.org/10.1103/PhysRevC.18.1985

J. Berger et al., Phys. Rev. Lett., (1976); Erratum, 37, 1651, (1976).

https://doi.org/10.1103/PhysRevLett.37.1195

L.G. Votta, P.G. Roos, N.S. Chant and R. Woody, Phys. Rev. C, 10, 520–528, (1974).

https://doi.org/10.1103/PhysRevC.10.520

Y.C. Tang, in Topic in Nuclear Physics II, Lecture Notes in Physics, 145, 571-692, (1981).

https://doi.org/10.1007/BFb0017231

R. Kamouni and D. Baye, Nucl. Phys. A, 791, 68-83, (2007).

https://doi.org/10.1016/j.nuclphysa.2007.04.009

G.R. Satchler, L.W. Owen, A.J. Elwyn, G.L. Morgan, and R.L. Walter, Nucl. Phys. A, 112,

, (1968).

https://doi.org/10.1016/0375-9474(68)90216-9

J. Dohet-Eraly and D. Baye, Phys. Rev. C, 84, 014604 (2011)

https://doi.org/10.1103/PhysRevC.84.014604

G.L. Morgan and R.L. Walter, Phys. Rev., 168, 1114, (1968).

https://doi.org/10.1103/PhysRev.168.1114

U. Laha and J. Bhoi, Phys. Rev. C, 91, 034614, (2015).

https://doi.org/10.1103/PhysRevC.91.034614

J. Bhoi and U. Laha, Brazilian Journal of Physics, 46, 129-132, (2016).

https://doi.org/10.1007/s13538-015-0388-x

A.K. Behera, J. Bhoi, U. Laha and B. Khirali, Commun. Theor. Phys., 72, 075301, (2020).

https://doi.org/10.1088/1572-9494/ab8a1a

B. Buck, H. Friedrich, C. Wheatley, Nucl. Phys. A, 275, 246-268, (1977).

https://doi.org/10.1016/0375-9474(77)90287-1

S.Y. Igashov, A.M. Shirokov, Bull. Russ. Acad. Sci. Phys., 71, 769–775 (2007).

https://doi.org/10.3103/S1062873807060044

A. Khachi, L. Kumar, A. Sharma and O.S.K.S. Sastri, J. Nucl. Phys. Mat. Sci. Rad. A., 9,

-5, (2021).

https://doi.org/10.15415/jnp.2021.91001

A. Sharma and O.S.K.S. Sastri,Int. J. Quantum Chem., 121, e26682, (2021).

https://doi.org/10.1002/qua.26682

A. Bohr and B.R. Mottelson, Nuclear Structure (World Scientific, Singapore, 1998).

F. Calogero, American Journal of Physics, (1968).

https://doi.org/10.1119/1.1975005

V.V. Babikov, Sov. Phys. Usp., 10, 271, (1967).

https://doi.org/10.1070/PU1967v010n03ABEH003246

P.M. Morse, W.P. Allis, Phys. Rev., 44, 269, (1933).

https://doi.org/10.1103/PhysRev.44.269

M. Odsuren, K. Katō, M. Aikawa and T. Myo, Phys. Rev. C., 89, 034322, (2014).

https://doi.org/10.1103/PhysRevC.89.034322

A. Csoto and G.M. Hale, Phys. Rev. C, 55, 536, (1997).

https://doi.org/10.1103/PhysRevC.55.536

J.E. Bond and F.W.K. Firk, Nucl. Phys. A, 287, 317-343, (1977).

https://doi.org/10.1016/0375-9474(77)90499-7

A.I. Mazur et al, Phys. Rev. C, 79, 014610, (2008).

https://doi.org/10.1103/PhysRevC.79.014610

K. Shibata, J. Nucl. Sci. Technol., 27, 81-88, (1990).

https://doi.org/10.1080/18811248.1990.9731154

Downloads

Published

2022-06-20

How to Cite

(1)
Kumar, L.; Khachi, A.; Sastri, O. Phase Shift Analysis for Neutron-Alpha Elastic Scattering Using Phase Function Method With Local Gaussian Potential. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 215-221.

Issue

Section

Conf_Articles