Charge Radius And Neutron Skin Thickness Of Platinum And Osmium Isotopes Near The Nuclear Drip Lines

Authors

DOI:

https://doi.org/10.15415/jnp.2022.92027

Keywords:

HFB theory, Nuclear drip lines, Charge radii, Skyrme functional, Neutron skin thickness

Abstract

Background: The density distributions of exotic nuclei are different from that of stable nuclei. For stable nuclei, charge radii can be obtained through electron scattering experiments. The excessive neutrons in neutron-rich nuclei make a decoupling of neutron and proton distribution and as a result nuclear skin structures are appeared.
Purpose: The charge radius and the way by which nucleons are distributed can provide information about size, surface thickness and shell structure of nuclei. The information collected from such nuclei can be used for astrophysical studies to understand the origin of heavy elements.

Methods: In the present study, we have made an attempt to investigate the charge radii, rms radii and skin thickness of Pt and Os isotopes. Here, the calculations were made by using the HFB solver which utilizes HO single-particle basis and iteratively diagonalizes the HFB Hamiltonian based on the Skyrme forces.
Results: Here we can observe an increase in charge radius, rms radius and skin thickness with neutron number. The charge radii calculated are in good agreement with the experimental data and predictions of RCHB model. A linear dependence of skin thickness on neutron number is observed with the change in slope is noticed around N =126.
Conclusion: Using HFB theory, we have analyzed the charge radius and neutron skin thickness of Pt and Os isotopes. The drip line nuclei have larger charge radius in comparison to the stable nuclei. The redistribution of the nucleons due to addition of neutrons leads to the gradual increase in neutron skin. The sudden increase of skin thickness may be due to the extra stability and shell closure around the magic number.

Downloads

Download data is not yet available.

Author Biographies

Nicemon Thomas

Research Scholar

Department Of Physics

University Of Calicut

Antony Joseph

Professor

Department of Physics

University of Calicut

References

J. Dobaczewski and W. Nazarewicz, Philos. Trans. R. Soc. London A, 356, 2007 (1998).https://doi.org/10.1098/rsta.1998.0261

S. Frauendorf, and A. O. Macchiavelli, Progress in Particle and Nuclear Physics 78, 24-90 (2014). https://doi.org/10.1016/j.ppnp.2014.07.001

R. F. Casten and B. M. Sherrill, Prog. Part. Nucl. Phys., 45, S171 (2000). https://doi.org/10.1016/S0146-6410(00)90013-9

J. Dobaczewski, W. Nazarewicz and M.V. Stoitsov, Eur. Phys. J. A, 15, 21 (2002). doi:10.1140/epja/i2001-10218-8

A. Bohr, B. R. Mottelson and D. Pines, Phys. Rev 110, 936 (1958). https://doi.org/10.1103/PhysRev.110.936

I. Angeli, K. P. Marinova, At Data Nucl. Data Tables 90, 69 (2013). https://doi.org/10.1016/j.adt.2011.12.006

N. Schunck and J. L. Edigo, Phys. Rev. C, 78, 064305 (2008). https://doi.org/10.1103/PhysRevC.78.064305

M. M. Sharma and P. Ring, Phys. Rev. C, 45, 2514 (1992). https://doi.org/10.1103/PhysRevC.45.2514

R. J. Furnstahl, Nucl. Phys. A, 706, 85 (2002). https://doi.org/10.1016/S0375-9474(02)00867-9

Jouni Suhonen From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer (2007).

P. Ring and P. Shuck, The Nuclear Many-Body Problem, Springer, Berlin (1980).

S.A. Changizi, C. Qi, and R. Wyss, Nuclear Physics A 940, 210 (2015). https://doi.org/10.1016/j.nuclphysa.2015.04.010

M.V. Stoitsov et al., Computer Physics Communications 167, 43–63 (2005). https://doi.org/10.1016/j.cpc.2005.01.001

R.R. Chasman, Phys. Rev. C, 14, 1935 (1976). https://doi.org/10.1103/PhysRevC.14.1935

J.Terasaki, P.H. Heenen, P. Bonche, J. Dobaczewski and H. Flocard, Nucl. Phys. A, 593,

(1995). https://doi.org/10.1016/0375-9474(95)00316-S

J.Terasaki, H. Flocard, P.H. Heenen and P. Bonche, Nucl. Phys. A, 621, 706 (1997). https://doi.org/10.1016/S0375-9474(97)00183-8

S. Mizutori, J. Dobaczewski, G. A. Lalazissis, W. Nazarewicz, and P.-G. Reinhard, Phys. Rev. C, 61, 044326 (2000). https://doi.org/10.1103/PhysRevC.61.044326

M. Kortelainen et al., Phys. Rev. C, 82, 024313 (2010). https://doi.org/10.1103/PhysRevC.82.024313

M. Bhuyan et al., International Journal of Modern Physics E Vol. 24, No.4, 1550028 (2015). https://doi.org/10.1142/S0218301315500287

N. Ashok and A. Joseph, Int. J. Mod. Phy. E, 27, 10, 1950093 (2019). https://doi.org/10.1142/S0218301319500939

M.V. Stoitsov et al., Computer Physics Communications 184, 1592-1604 (2013). https://doi.org/10.1016/j.cpc.2013.01.013

J. Dobaczewski, W. Nazarewicz and T. R. Werner, Z. Phys. A, 354, 27(1996). https://doi.org/10.1007/S002180050009

X. W. Xia et.al., At. Data and Nucl. Data Tables 121, 1(2018). https://doi.org/10.1016/j.adt.2017.09.001

Downloads

Published

2022-06-20

How to Cite

(1)
A V, A.; Thomas, N. .; Joseph, A. Charge Radius And Neutron Skin Thickness Of Platinum And Osmium Isotopes Near The Nuclear Drip Lines. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 187-191.

Issue

Section

Conf_Articles