Theoretical Model to Estimate the Distribution of Radon in Alveolar Membrane Neighborhood

Authors

  • J. C. Corona Laboratorio de Biofísica Molecular Facultad de Ciencias de la Universidad Autónoma del Estado de México.
  • F. Zaldivar Laboratorio de Biofísica Molecular Facultad de Ciencias de la Universidad Autónoma del Estado de México.
  • L. A. Mandujano-Rosas Laboratorio de Biofísica Molecular Facultad de Ciencias de la Universidad Autónoma del Estado de México.
  • F. Mendez Laboratorio de Ecofisiología Animal. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro. Toluca, Estado de México. C.P. 50000. México.
  • J. Mulia Laboratorio de Biofísica Molecular Facultad de Ciencias de la Universidad Autónoma del Estado de México.
  • D. Osorio-Gonzalez Laboratorio de Biofísica Molecular Facultad de Ciencias de la Universidad Autónoma del Estado de México.

DOI:

https://doi.org/10.15415/jnp.2016.41006

Keywords:

Radon distribution, alveolar membrane, molecular dynamics, radon in alveoli

Abstract

Radon is a naturally occurring radioactive gas which tends to concentrate indoors, easily emanates from the ground into the air, where it disintegrates and emits radioactive particles. It can enter the human body through breathing or ingesting mostly water. When radon inhaled, travels through the respiratory tract to alveoli where the majority is expelled into the environment. Moreover, when ingested in water, it passes into the intestine where it is absorbed and driven from the bloodstream to the lungs; in these organs, due to differences in partial pressures, it is transported to alveoli by simple diffusion process. When radon is not removed, it decays in short-lived solid disintegration products (218Po and 214Po) with high probability of being deposited in biological tissues, causing DNA damage because of the densely ionizing alpha radiation emitted. We propose a semi-empirical, smooth, and continuous pair potential function in order to model the molecular interactions between radon and lung alveolar walls; we use Molecular Dynamics (MD) to determine the gas distribution in an alveolar neighborhood wall, and estimate the quantity thereof it diffuses through the alveolar membrane as a concentration function.

Downloads

Download data is not yet available.

References

Chen, J., Chen, Z., Narasaraju, T.,Jin, N. & Liu, L. Isolation of highly pure alveolar epithelial type I and type II cells from rat lungs. Laboratory Investigation. 84,727–735 (2004).http://dx.doi.org/10.1038/labinvest.3700095

Dobbs L.G., Gonzalez, R., Matthay, M.A., Carter, E.P., Allen, L. &Verkman, A.S. Highly water-permeable type I alveolar epithelial cells confer high water permeability between the airspace and vasculature in rat lung. Cell Biology. 95, 2991–2996 (1998). http://dx.doi.org/10.1073/pnas.95.6.2991

Hill, R. W., Wyse, G. A.& Anderson, M. (2012).Animal Physiology.3rd ed. Sinauer Associates, Inc. Publishers. Sunderland, Massachusetts.

Jason R. M. (2016).Prediction of Radon-222, Phase Behavior by Monte Carlo Simulation.J. Chem. Eng. Data. Article ASAP. doi: 10.1021/acs.jced.5b01002. http://dx.doi.org/10.1021/acs.jced.5b01002

Johnson, M. D.,Widdicombe, J. H., Allen, L.,Barbrys, P. & Dobbs, L. G. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. PNAS. 99(4), 1966-1971(2002). http://dx.doi.org/10.1073/pnas.042689399

Koulich V. V., Lage, J. L., Hsia, C. C. W. & Johnson, Jr, R. L. A porous medium model of alveolar gas diffusion. J. Porous Media, 2, 263–75 (1999). http://dx.doi.org/10.1615/JPorMedia.v2.i3.4

Koulich, V., Lage, JL., Hsia, C.C. W.& Johnson, R.L. Jr. Three-dimensional unsteady simulation of alveolar respiration. J Biomed Eng 124, 609–616 (2002).

National Academy of Sciences.(1999). Risk Assessment of Radon in Drinking Water. Committee on Risk Assessment of Exposure to Radon in Drinking Water, National Research Council. National Academy Press. Washington D.C.

Nussbaum, E. (1957). Radon Solubility in Body Tissues and in Fatty Acids. Report UR-503. Rochester, NY. University of Rochester.

Tchorz-Trzeciakiewicz, D. E. &Solecki, A. T. Seasonal variation of radon concentrations in atmospheric air in the NowaRuda area (Sudety Mountains) of southwest Poland. Geochemical Journal, 45, 455-461 (2011). http://dx.doi.org/10.2343/geochemj.1.0149

Downloads

Published

2016-08-08

How to Cite

(1)
Corona, J. C. .; Zaldivar, F. .; Mandujano-Rosas, L. A. .; Mendez, F. .; Mulia, J. .; Osorio-Gonzalez, D. . Theoretical Model to Estimate the Distribution of Radon in Alveolar Membrane Neighborhood. J. Nucl. Phy. Mat. Sci. Rad. A. 2016, 4, 59-68.

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.