Radii of Thorium Nuclides Lying in Between the Drip Lines

Authors

  • UMMUKULSU E DEPARTMENT OF PHYSICS, UNIVERSITY OF CALICUT, KERALA
  • Prof Antony Joseph Department of Physics, University of Calicut, Kerala 673635, India

DOI:

https://doi.org/10.15415/jnp.2022.92031

Keywords:

Charge radii, nuclear shape, deformation, Hartree-Fock equation, Skyrme force

Abstract

Background: Nuclear rms radii give information about the nuclear structure, nuclear shape, deformation etc. Microscopic methods are widely used for the study of nuclear structure properties. Hartree-Fock method with an effective interaction of Skyrme force is used for studying the nuclear structure properties.
Purpose: To calculate the rms radii of proton and neutron for thorium nuclei, lying between the drip lines, by using the microscopic mean field theory. The nuclear rms radii data is useful for identifying the shape variation of thorium nuclei, from proton drip line to neutron drip line. It also helps to identify the trends in nuclear radii variation as we move towards the drip line. This nuclear data will be useful in designing experiments in future and also in understanding the behaviour of complex nuclei. Microscopic study of thorium nuclei is also important in the astrophysical environments.
Methods: This study is based on the Skyrme interacting potential in the Hartree-Fock mean field theory. Iterative diagonalization method with the help of a computational code is used for solving the Hartree-Fock equation.
Results: We have calculated the rms radii of neutron, proton and their total with SV, SLY4 and UDF2 parametrization of the Skyrme force. Neutron rms radii, proton rms radii and total rms radii of thorium nuclei are found to increase with neutron number. UDF2 parametrization shows an oscillatory nature in the rms radii. This may be due to the shape change of thorium nuclei when adding neutrons.
Conclusions: The rms radii of thorium nuclei are found to increase with neutron number. The Skyrme force with UDF2 parametrization is the most suitable one for the structure studies of thorium nuclei.

Downloads

Download data is not yet available.

References

T. Bayram, Acta Physica Polonica B, 44, 8 (2013).

https://doi.org/10.5506/APhysPolB.44.1791

N. Ahmmed, Abdul llah, Iraq qi Journal of Physics, 15, 32 (2017).

https://doi.org//10.30723/ijp.v15i32.153

A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693,32 (2001).

https://doi.org/10.1016/S0375-9474(01)01152-6

B. Cheal, K.T. Flanagan, J. Phys. G 37, 113101 (2010).

https://doi.org/10.1088/0954-3899/37/11/113101

K. Blaum, J. Dilling, W. Nrtershuser, Phys. Scr. T152, 014017 (2013).

https://doi.org/10.1088/0954-3899/37/11/113101

L. Xie et al., Physics Letters B 797 (2019).

https://doi.org/10.1016/j.physletb.2019.134805

A. Alzubadi, Z. A. Dakhil, Sheimaa T. Aluboodi,Journal of Nuclear and Particle Physics, 4(6),

-163 (2014).

https://doi.org/10.5923/j.jnpp.20140406.01

E. Ummukulsu, A. Jodeph, Modern Physics Letters A 34, 11, 1950091 (2019).

https://doi.org/10.1142/S0217732319500913

Bender M., Heenen P.-H., and Reinhard P.-G., Rev. Mod. Phys., 75, 121 (2003).

https://doi.org/10.1103/RevModPhys.75.121

Niksic T., Vretenar D., and Ring P., Prog. Part. Nucl. Phys., 66, 519 (2011).

https://doi.org/10.1016/j.ppnp.2011.01.055

Duguet T., in Lecture Notes in Physics, 879 (Springer, Heidelberg) pp. 293-350 (2014).

Vretenar D., Afanasjev A. V., Lalazissis G. A. and Ring P., Phys. Rep., 409, 101 (2005).

https://doi.org/10.1016/j.physrep.2004.10.001

Niksic T., Vretenar D., and Ring P., Phys. Rev. C, 78,034318 (2008).

https://doi.org/10.1103/PhysRevC.78.034318

Tian Y., Ma Z. Y., and Ring P., Phys. Lett. B, 676 44 (2009).

https://doi.org/10.1016/j.physletb.2009.04.067

J. Dobaczewski, I. Hamamoto, W. Nazarewicz and J. A. Sheikh, Phys. Rev. Lett. 72, 981 (1994).

https://doi.org/10.1103/PhysRevLett.72.981

J. Dobaczewski, Computer Physics Communications 102, 166-182 (1997).

https://doi.org/10.1016/S0010-4655(97)00004-0

Bharath kumar et al., Phys. Rev. C 92, 054314 (2015).

https://doi.org/10.1103/PhysRevC.92.054314

Downloads

Published

2022-06-20

How to Cite

(1)
E, U.; Joseph, P. A. Radii of Thorium Nuclides Lying in Between the Drip Lines. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 209-213.

Issue

Section

Conf_Articles