Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems

  • K. Beltran Laboratorio de Biofísica Molecular. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro Toluca, Estado de México C.P. 50000. México.
  • J.M. De Jesus-Miranda Laboratorio de Biofísica Molecular. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro Toluca, Estado de México C.P. 50000. México.
  • J.A. Castro Laboratorio de Biofísica Molecular. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro Toluca, Estado de México C.P. 50000. México.
  • L.A. Mandujano-Rosas Laboratorio de Biofísica Molecular. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro Toluca, Estado de México C.P. 50000. México.
  • J.M. Paulin-Fuentes Laboratorio de Biofísica Molecular. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro Toluca, Estado de México C.P. 50000. México.
  • D. Osorio-Gonzalez Laboratorio de Biofísica Molecular. Facultad de Ciencias de la Universidad Autónoma del Estado de México. Instituto Literario 100, Col. Centro Toluca, Estado de México C.P. 50000. México.
Keywords: green fluorescent protein, bacterial systems, bacterial temperature, spectroscopic properties

Abstract

The unique and stunning spectroscopic properties of Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria, not to mention of its remarkable structural stability, have made it one of the most widely studied and used molecular tool in medicine, biochemistry, and cell biology. Its high fluorescent quantum yield is due to its chromophore, structure responsible of emitting green visible light when excited at 395 nm. Although it is noteworthy that there is enormous available information of the wonderful luminescent properties of GFP, the fact is that there are features and properties unexplored yet, particulary about its capabilities as molecular reporter in several biological processes. In this work, we used recombinant DNA technology to express the protein in bacteria; prepared the bacterial system both in liquid and solid media, and assembled an experimental set to expose those media to a laser beam; thereby we excited the protein chromophore and used emission spectroscopy in order to observe variations in fluorescence when the bacterial system is exposed to different temperatures.

Downloads

Download data is not yet available.

References

Baker, M. Microscopy: Bright light, better labels. Technology feature. Nature. 478: 137-142. (2011). http://dx.doi.org/10.1038/478137a

Blow, N. Cell imaging: New ways to see a smaller world. Nature. 456: 825-828. (2008). http://dx.doi.org/10.1038/456825a

Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green Fluorescent Protein as a Marker for Gene Expression. Science. 263(5148): 802-805. (1994). http://dx.doi.org/10.1126/science.8303295

Donner, J., Thompson, S., Kreuzer, M., Baffou, G. & Quidant, R. Mapping intracellular temper-ature using green fluorescent protein. Nano Letters. 12(4): 2107-2111. (2012). http://dx.doi.org/10.1021/nl300389y

Hernández, C.M. Caracterización funcional y ensamblaje membranal del canal de potasio shaker H4, y de segmentos truncados en la porción amino o carboxilo. Tesis de maestría. Un-iversidad de Colima, (2001).

Knop, M. & Edgar, B. A. Tracking protein turnover and degradation by microscopy: photo-switchable versus time-enconded fluorescent proteins. Open biology, (2014). doi:10.1098/rsob.140002 http://dx.doi.org/10.1098/rsob.140002

Prasher, D. C., Eckenrode, V. K., Ward, W. W., Pendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2): 229-233. (1992). http://dx.doi.org/10.1016/0378-1119(92)90691-H

Tsien, R. Y. The green fluorescent protein. Annu Rev. Biochem. 67: 509-544. (1998). http://dx.doi.org/10.1146/annurev.biochem.67.1.509

Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature. 369(6479): 400-403. (1994). http://dx.doi.org/10.1038/369400a0

Zhang C, Liu M. S. & Xing X. H. Temperature Influence on Fluorescence Intensity and En-zyme Activity of the Fusion Protein of GFP and Hyperthermophilic Xylanase. Appl. Microbiol. Biotechnol. 84(3): 511-517. (2009). http://dx.doi.org/10.1007/s00253-009-2006-8

Published
2016-08-08
How to Cite
K. Beltran, J.M. De Jesus-Miranda, J.A. Castro, L.A. Mandujano-Rosas, J.M. Paulin-Fuentes, & D. Osorio-Gonzalez. (2016). Using Green Fluorescent Protein to Correlate Temperature and Fluorescence Intensity into Bacterial Systems . Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 4(1), 49-57. https://doi.org/10.15415/jnp.2016.41005
Section
Articles