The Indoor Radon Concentration within the Tunnels of the Cholula Pyramid Through a Nuclear Tracks Methodology

  • A. Lima-Flores Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P.72570, México
  • R. Palomino-Merino Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P.72570, México
  • E. Espinosa Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur, Colonia San Manuel, Ciudad Universitaria, Puebla C.P.72570, México
  • V.M. Castano Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriqulla 3001, Santiago de Querétaro, Querétaro C.P.76230, México
  • E. Merlo-Juarez Instituto Nacional de Antropología e Historia delegación Puebla, zona arqueológica de Cholula, 8 Norte No. 2 Colonia Centro, San Andrés Cholula, Puebla C.P.72760, México
  • M. Cruz-Sanchez Instituto Nacional de Antropología e Historia delegación Puebla, zona arqueológica de Cholula, 8 Norte No. 2 Colonia Centro, San Andrés Cholula, Puebla C.P.72760, México
  • G. Espinosa Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, México D.F. C.P.04510, México
Keywords: Indoor radon, radon concentration, Nuclear Track Methodology, Cholula pyramid

Abstract

Global organizations, including the World Health Organization (WHO), the Environmental Protection Agency of the United States (US-EPA) and the European Atomic Energy Community (EURATOM) recognize that radon gas as one of the main contributors to environmental radiation exposure for humans. Accordingly, a study and analysis of the indoors radon concentrate in the Cholula Pyramid contributes to understand the Radon dynamic inside of the Pyramid tunnels and to evaluate the radiological health risk to visitors, archaeologists, anthropologists and persons who spend extended periods inside the Pyramid. In this paper, the radon measurements along the Pyramid tunnels are presented. The Nuclear Track Methodology (NTM) was chosen for the measurements, using a close end-cup device developed at the Dosimetry Application Project (DAP) of the Physics Institute UNAM, following very well established protocols for the chemical etching and reading with the Counting Analysis Digital Imaging System (CADIS). The Cholula Pyramid consists of eight stages of constructions, each built in different periods of time. Cholula Pyramid is recognized as the pyramid with the largest base in the World, with 400 meters per side and 65 meters high. The tunnels of the pyramid were built in 1931 by architect Ignacio Marquina, with the aim of exploring and studying the structure. The results show an important indoor radon concentration in the measured tunnels, several times higher than levels recommended by United States Environmental Protection Agency (US-EPA). The recommendation will be to mitigate the radon concentration levels, in order to avoid unnecessary exposition to the people.

Downloads

Download data is not yet available.

References

Childs, E. Teotihuacan ceramics, chronology and cultural trends. Distrito Federal: Insti-tuto Nacional de Antropología e Historia, (2001).

Cruz, M. Levantamiento topográfico de los túneles de la Gran Pirámide de Cholula. Proyecto de Integración Arqueológico, Histórico y Urbano de Cholula, Puebla. Puebla: Instituto Nacional de Antropología e Historia, (2002).

Espinosa, G. Trazas Nucleares en Sólidos. Distrito Federal: Universidad Nacional Autónoma de México, (1994).

Espinosa, G. & Gammage, R.B. Measurements methodology for indoor radon using passive track detectors. Appl. Radiat. lsot., 4, 719-723, (1993).

Espinosa, G., Manzanilla, L., & Gammage, R.B. Radon Concentration in the Pyramid of the Sun at Teotihuacan. Radiation Measurements. 28, 667-670, (1997). http://dx.doi.org/10.1016/S1350-4487(97)00161-3

Fieischer, R.L., Price, P.B. & Walker, R.M. Nuclear tracks in solids, principles and applications. Berkeley: University of California Press (1975).

Gammage, R.B. & Espinosa, G. Digital Imaging System for Track Measurements. Radiation Measurements. 28, 835, (1997). http://dx.doi.org/10.1016/S1350-4487(97)00193-5

Humboldt, A. Vistas de las cordilleras y monumentos de los pueblos indígenas de Amé-rica. Distrito Federal: Siglo XXI Editores, (1995).

Jiménez, W. El Enigma de los Olmecas. Distrito Federal: Cuadernos Americanos, (1942).

Matos, E. Excavaciones en la Gran Pirámide de Cholula (1931-1970). Resource Docu-ment. Arqueología Mexicana. http://www.arqueomex.com/ S2N3nProyecto115.html. Accessed 4 April 2016, (2012).

Marquina, I. Exploraciones en la pirámide de Cholula, Pue. Distrito Federal: Secretaría de Educación Pública, (1939).

Merlo, E. Cholula, la Roma de Mesoamérica. Resource Document. Arqueología Mex-icana. http://www.arqueomex.com/S2N3nCholula115.html. Accessed 4 April 2016, (2012).

Noguera, E. La cerámica arqueológica de Cholula. Distrito Federal: Editorial Guaranda, (1954).

Quinones, E. Codex Telleriano-Remensis: Ritual, Divination, and History in a Pictorial Aztec Manuscript. Texas: University of Texas Press, (1995).

Reyes, C. El altepetl, orígen y desarrollo. Construcción de la identidad regional náhuatl. Michoacán: El Colegio de Michoacán, (2000).

Simeon, R. Diccionario de la lengua náhuatl o mexicana. México: Siglo XXI Editores, (1977).

Solis, F. R., Uru-uela, M. G., Plunket, P., & Cruz, M. La Gran Pirámide de Cholula. Distrito Federal: Grupo Azabache, (2007).

Uru-uela, M. G., de Guevara, L. & Robles, M. A. Las subestructuras de la Gran Pirá-mide de Cholula. Viejos túneles, nueva tecnología, nuevos datos. Resource Document. Arqueo-logía Mexicana, (2012). http://www.arqueomex.com/S2N3nTuneles115.html. Accessed 4 April 2016.

US-EPA. Environmental Protection Agency Report No. EPA 400-R-92-011, (1992).

Published
2016-08-08
How to Cite
A. Lima-Flores, R. Palomino-Merino, E. Espinosa, V.M. Castano, E. Merlo-Juarez, M. Cruz-Sanchez, & G. Espinosa. (2016). The Indoor Radon Concentration within the Tunnels of the Cholula Pyramid Through a Nuclear Tracks Methodology . Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 4(1), 77-88. https://doi.org/10.15415/jnp.2016.41008
Section
Articles