Semi Empirical Formula For Neutrinoless Double Beta Decay

  • M.K. Preethi Rajan School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670327, India
  • R.K. Biju Department of Physics, Pazhassi Raja N S S College, Mattanur 670702, India
  • K.P. Santhosh Department of Physics, Pazhassi Raja N S S College, Mattanur 670702, India
Keywords: Neutrinoless double beta decay, Nuclear matrix element

Abstract

A Semi empirical formula for both phase space factor and Nuclear Matrix Element (NME) is developed for neutrinoless double beta decay, and the formula is used to compute the neutrinoless double beta decay half lives. Thecomputed half lives for neutrinoless double beta decay are compared with the corresponding experimental values and with those predicted by QRPA model. The semi empirical formula predictions are found to be in good agreement with experimental data. The semi empirical formula is used to predict neutrinoless double beta decay of various isotopes Ca, Ge, Se, Zr, Mo, Pd, Cd, Sn, Te, Xe, Nd and Sm that exhibiting single beta decay. As our semi empirical formula predictions agree with the experimental data we hope that the present work will be useful for the future experiments.

Downloads

Download data is not yet available.

References

A. S. Barabash, Phys. Rev. C 81, 035501 (2010) http://dx.doi.org/10.1103/PhysRevC.81.035501

A. S. Barabash and V. B. Brudanin, Phys. At. Nucl. 74, 312 (2011) http://dx.doi.org/10.1134/S1063778811020062

A. Neacsu and S. Stoica, arXiv: 1308.1047v2, Nucl.th (2013)

C. Arnaboldi et al, Phys. Rev. Lett. 95, 142501 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.142501

C. Arnaboldi et al, Phys. Rev. C 78, 035502 (2008) http://dx.doi.org/10.1103/PhysRevC.78.035502

D. Fink et al, arXiv: 1112.5786v1 [nucl.ex] (2011)

E. Andreotti et al, Astropart. Phys. 34 822 (2011) http://dx.doi.org/10.1016/j.astropartphys.2011.02.002

E. Caurier, F. Nowacki, A. Poves and J. Retamosa, Phys.Rev.Let.77, 1954 (1996) http://dx.doi.org/10.1103/PhysRevLett.77.1954PMid:10061820

E. Fiorini and T. O. Niinikoski, Nucl. Instrum. Methods, Phys. Res. 224, 83(1984) http://dx.doi.org/10.1016/0167-5087(84)90449-6

E. J. Konopinski, Theory of Beta Radioactivity (Oxford University Press, London) (1966)

E. Majorana, Nuovo Cim. 14, 171 (1937) http://dx.doi.org/10.1007/BF02961314

F. A. Danevich et al, Nucl. Phys. A 694, 375 (2001) http://dx.doi.org/10.1016/S0375-9474(01)00983-6

F. A. Danevich et al, Phys. Rev. C 68, 035501 (2003) http://dx.doi.org/10.1103/PhysRevC.68.035501

F. T. Avignone III, S. R. Elliott and J. Engel, Rev. Mod. Phys. 80, 481 (2008) http://dx.doi.org/10.1103/RevModPhys.80.481

G. Audi, A.H. Wapstra and C. Thivault, Nucl. Phys. A 729, 337 (2003) http://dx.doi.org/10.1016/j.nuclphysa.2003.11.001

G. Racah, Nuovo Cim. 14, 322 (1937) http://dx.doi.org/10.1007/BF02960616

H. Primakoff and S. P. Rosen, Rep. Prog. Phys. 22, 121 (1959) http://dx.doi.org/10.1088/0034-4885/22/1/305

H. V. Klapdor-Kleingrothaus et al, Eur. Phys. J. A 12, 147 (2001) http://dx.doi.org/10.1007/s100500170022

J. Argyriades et al, Phys. Rev. C 80, 032501(R) (2009)

J. Argyriades et al, Nucl. Phys. A 847, 168 (2010) http://dx.doi.org/10.1016/j.nuclphysa.2010.07.009

J. Engel, P. Vogel and M. Zirnbauer, Phys. Rev. C 37, 731 (2008) http://dx.doi.org/10.1103/PhysRevC.37.731

J. J. Gmez-Cadenas and Justo Martn-Albo, arXiv: 1502.00581v2 [hep-ex] (2015)

J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982) http://dx.doi.org/10.1103/PhysRevD.25.601

J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998) http://dx.doi.org/10.1016/S0370-1573(97)00087-2

M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Prog. Theor. Phys. 66, 1739 (1981) http://dx.doi.org/10.1143/PTP.66.1765

M. Doi, T. Kotani, H. Nishiura and E. Takasugi, Prog. Theor. Phys. 69, 602 (1983) http://dx.doi.org/10.1143/PTP.69.602

M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985) http://dx.doi.org/10.1143/PTPS.83.1

M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935) http://dx.doi.org/10.1103/PhysRev.48.512

M. Kortelainen and J. Suhonen, Phys. Rev. C 76, 024315 (2007) http://dx.doi.org/10.1103/PhysRevC.76.024315

M. Mirea, T. Pahomi and S. Stoica, arXiv: 1411.5506v3 [nucl-th] (2015)

P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986) http://dx.doi.org/10.1103/PhysRevLett.57.3148

R. Arnold et al, Nucl. Instrum. Methods. A 536, 79 (2005) http://dx.doi.org/10.1016/j.nima.2004.10.012

R. Bernabei et al, Phys. Lett. B 546 23 (2002) http://dx.doi.org/10.1016/S0370-2693(02)02671-0

R. G. H. Robertson, Mod. Phys. Lett. A 28, 1350021 (2013) http://dx.doi.org/10.1142/S0217751X13500218

S. Rahaman et al, Phys. Lett. B 703, No.4, 412 (2011) http://dx.doi.org/10.1016/j.physletb.2011.07.078

S. Umehara et al, Phys. Rev. C 78, 058501 (2008) http://dx.doi.org/10.1103/PhysRevC.78.058501

T. Tomoda, Rep. Prog. Phys. 54, 53 (1991) http://dx.doi.org/10.1088/0034-4885/54/1/002

V. A. Rodin, A. Faessler, F. Simkovic and P. Vogel, Nucl.Phys A766, 107 (2006) http://dx.doi.org/10.1016/j.nuclphysa.2005.12.004

W. H. Furry, Phys. Rev. 56, 1184 (1939) http://dx.doi.org/10.1103/PhysRev.56.1184

Published
2016-02-08
How to Cite
M.K. Preethi Rajan, R.K. Biju, & K.P. Santhosh. (2016). Semi Empirical Formula For Neutrinoless Double Beta Decay . Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 3(2), 165-177. https://doi.org/10.15415/jnp.2016.32018
Section
Articles