Theoretical Study of Interplay Between Superconductivity and Itinerant Ferromagnetism

Authors

  • Subhra Kakani Department of Physics M. l. V. Govt. P.G. College, bhIlwARA-311001 (RAJ.)-INDIA
  • Anuj Nuwal Department of Physics Sangam university N.h. No. 79, bhilwara by-Pass, Chittor Road bhIlwARA-311001 (RAJ.)-INDIA
  • S. L. Kakani 4-G-45, Shastri Nagar, New housing board BHILWARA -311001 (RAJ.)-INDIA

DOI:

https://doi.org/10.15415/jnp.2014.21004

Keywords:

Itinerant ferromagnetism, Green’s function, Superconductivity, Energy spectra and density of states, BCS hamiltonian, Hubbard Hamiltonian

Abstract

Following Green’s function technique and equation of motion method, the coexistence of superconductivity (SC) and itinerant ferromagnetism (FM) is investigated in a single band homogenous system. Self consistent equations for SC and FM order parameters, Δ and m or I respectively are derived. It is shown that there generally exists a coexistent (Δ ≠ 0, and m or I ≠ 0) solutions to the coupled equations of the order parameter in the,temperature range 0 < T < min(TC, TFM), where TC and TFM are respectively the superconducting and ferromagnetic transition temperatures. Expressions for specific heat, density of states, free energy and critical field are derived. The specific heat has linear temperature dependence as opposed to the exponential decrease in the bCS theory. The density of states for a finite m increases as opposed to that of a ferromagnetic metal. Free energy study reveals that FM-SC state has lowest energy than the normal FM state and therefore realized at low enough temperature .Effect of small external field is also studied. The theory is applied to explain the observations in uranium based intermetallics systems UCoGe and UIr. The agreement between theory and experiments is quite encouraging.

Downloads

Download data is not yet available.

References

S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.w. haselwimmer, M.J. Steiner, E. Pugh, I. R. walker, S.R. Julian, P. Monthoux, G. G. lonzarich, A. huxley, I. Sheikin, D. braithwaite and J. Flouquet, Nature 406, 587, (2000). http://dx.doi.org/10.1038/35020500

D. Aoki, A. huxley, E. Ressouche, D. braithwaite, J. Flouquet, J.P. brison, E. lhotel and C. Paulsen, Nature 413, 613, (2001). http://dx.doi.org/10.1038/35098048

T. Akazawa, h. hidaka, T. Fujiwara, T.C. Kobayashi, E. Yamamoto,Y. haga, R. Settai,

Y. Onuki, J. Phys. Condens.Matter 16, l29, (2004). http://dx.doi.org/10.1088/0953-8984/16/1/003; http://dx.doi.org/10.1088/0953-8984/16/4/l02

N.T. huy, A. Gasparini, D.E. de Nijs, Y. huang, J.C.P. Klaasse, T. Gortenmulder, A. de Visser, A. hamann, T. Gorlach, h.V. lohneysen, Phys. Rev. lett. 99, 067006, (2007). http://dx.doi.org/10.1103/PhysRevlett.99.067006

S.l. Kakani and S. Kakani, ‘Superconductivity’, first ed., Anshan ltd., uK, (2009).

S.l. Kakani and u.N. upadhyaya, J. low Temp. Phys. 70, 5, (1988). http://dx.doi.org/10.1007/bF00683246

K.P. Sinha and S.l. Kakani, first ed.,’Magnetic Superconductors: Recent Developments’, Nova Science Publishers, New York, (1989).

S.l. Kakani and S. Kakani, ‘Superconductivity’, second ed. New Age International, New Delhi, (2012).

K.N. Srivastava and K. P. Sinha, Phys. Reports 115, 93, (1984). http://dx.doi.org/10.1016/0370-1573(84)90122-4

N. Karchev, ar XIV Cond – mat / 0405371 V2 15, (2004).

K. Machida and T. Ohmi, Phys. Rev. lett. 86, 850, (2001). http://dx.doi.org/10.1103/PhysRevlett.86.850

h. Shimahara and M. Kohmoto, Europhys. lett. 57, 247, (2002). http://dx.doi.org/10.1209/epl/i2002-00568-7

S. watanable and K. Miyake, J. Phys. Soc. Jpn. 71, 2489, (2002). http://dx.doi.org/10.1143/JPSJ.71.2489

K.G. Sandeman, G. lonzarich and A. Schofield, Phys. Rev. lett. 90, 167005, (2003). http://dx.doi.org/10.1103/PhysRevlett.90.167005

T.R. Kirkpatrick, D. belitz, T. Vojta and R. Narayanan, Phys. Rev. lett. 87, 1270003, (2001). http://dx.doi.org/10.1103/PhysRevlett.87.127003

T.R. Kirkpatrick and D. belitz, Phys. Rev. B 67, 024515, (2003). http://dx.doi.org/10.1103/PhysRevb.67.024419;

V.P. Mineev and T. Champel, Phys. Rev. B 69, 144521, (2004). http://dx.doi.org/10.1103/PhysRevb.69.144429

h. Kaneyasu and K. Yamada, ar Xiv : Cond – Mat / 0603066 V 13 Mar. 2006.

h. Suhl, Phys. Rev. lett. 87, 167007, (2001). http://dx.doi.org/10.1103/PhysRevlett.87.167007

A. A. Abrikosov, J. Phys. : Condens. Matter 13, l 943, (2001).

K.V. Samokhin and M.b. walker, Phys. Rev. B 66, 174501, (2002). http://dx.doi.org/10.1103/PhysRevb.66.024512

D.I. uzunov, Cond – mat / 0611431 1, 16, (2006).

D.I. uzunov, Phys. Rev. b 74, 134514, (2006). http://dx.doi.org/10.1103/PhysRevb.74.134514

Y. Zhou and C.D. Gong, Europhys. lett. 74 (1) 145, (2006). http://dx.doi.org/10.1209/epl/i2005-10495-1

b.J. Powell, J.F. Annett and b.l. Gyorffy, J. Phys. : Condens. Matter 15 L (2003) 235; J Phys. A : Math. Gen. 36, 9289, (2003). http://dx.doi.org/10.1088/0305-4470/36/35/314

K.b. blagoev, J. R. Engelbrecht, and K.S. bedell, Philos. Mag. lett. 78 (1998) 169; Phys. Rev. lett. 82, 133, (1999). http://dx.doi.org/10.1080/095008398178165

D. Fay and J. Appel, Phys. Rev. b 22, 3173, (1980). http://dx.doi.org/10.1103/PhysRevb.22.3173

S. Kakani, K.C. Pancholi and S.l. Kakani, J. Supercond. Nov. Magn.: DOI 10.1007/s 10948-010-0927-1 (2010).

S. Kakani, K.C. Pancholi and S.l. Kakani, J. Supercond. Nov. Magn.: DOI 10.1007/s 10948-009-0521-6(2009); 23, 237 (2010).

A.M. Clogston, Phys. Rev. lett. 9, 266, (1962). http://dx.doi.org/10.1103/PhysRevlett.9.266

b.S. Chandrasekhar, Appl. Phys. lett. 1, 7, (1962). http://dx.doi.org/10.1063/1.1777362

w. baltensperger, Physica 24, 5153, (1958). http://dx.doi.org/10.1016/S0031-8914(58)80579-0

Y. Onuki, I. ukon, S. w. Yun, I. umehara, K. Satoh, T. Fukuhara, h. Sato, S. Takayanagi, M. Shikama and A. Ochiai, J. Phys. Soc. Jpn. 61, 293, (1992). http://dx.doi.org/10.1143/JPSJ.61.960

G. Gorski, K. Kucab and J. Mizia, Physica C 469, 1, (2009). http://dx.doi.org/10.1016/j.physc.2008.09.010

J. hubbard, Proc. R. Soc. (london) Sec. A 276, 238, (1963). http://dx.doi.org/10.1098/rspa.1963.0204

S.l. Kakani and u.N. upadhyaya, Phys. Stat. Sol (a) 99, 15, (1987). http://dx.doi.org/10.1002/pssa.2210990142

N. Karchev, J. Phys. : Condens : Matter 15, l385, (2003). http://dx.doi.org/10.1088/0953-8984/15/3/306

S.l. Kakani and u.N. upadhyaya, J. low Temp. Phys. 53 (1983) 221; Phys. Stat. Sol. (b) 125 (1984) 861; Phys Stat Sol. (b) 135 (1986) 235; Phys. Stat. Sol. (a) 99 (1987) 15. http://dx.doi.org/10.1007/bF00685781

A.M. Clogston, Phys. Rev. lett. 9, 266, (1962). http://dx.doi.org/10.1103/PhysRevlett.9.262

b.S. Chandrasekhar, Appl. Phys. lett. 1, 7, (1962). http://dx.doi.org/10.1063/1.1777362

K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 954 (1964). http://dx.doi.org/10.1143/PTP.31.331

S.l. Kakani, C. hemrajani and M. Kakani, J. low Temp. Phys. 82, 1, (1991). http://dx.doi.org/10.1007/bF00681547

J. linder and A Sudbo, Phys. Rev. B76, 054511, (2007). http://dx.doi.org/10.1103/PhysRevb.76.054511

N.I. Karchev, Phys. Rev. B77, 012405, (2008). http://dx.doi.org/10.1103/PhysRevb.77.012405

N.I. Karchev, K.b. blagoev, K.S. bedell, and P.b. littlewood, Phys. Rev. lett. 86, 846, (2001). http://dx.doi.org/10.1103/PhysRevlett.86.846

N.C. Das, Phys. Rev. B35, 4781, (1987). http://dx.doi.org/10.1103/PhysRevA.35.4781

N.T. huy, D.E. de Nijs, Y.K. huang, and A. de Visser, Phys. Rev. lett. 100, 077001, (2008). http://dx.doi.org/10.1103/PhysRevlett.100.077001

C. Pfleiderer and h.V. lohneysen, J. low Temp. Phys. 126, 933, (2002). http://dx.doi.org/10.1023/A:1013846725405

h. Nakanishi, K. Machida and T. Matsubara, Solid State Commun. 43, 899, (1982). http://dx.doi.org/10.1016/0038-1098(82)90925-5

X.l. lei, C.S. Ting, and J.l. birman, Phys. Rev. b. 29, 2483, (1984). http://dx.doi.org/10.1103/PhysRevb.29.2483

h. Matsumoto and h. umezawa, Cryogenics 23, 37, (1983). http://dx.doi.org/10.1016/0011-2275(83)90138-8

E.I. blount and C.M. Varma, Phys Rev. lett. 42, 1079, (1979). http://dx.doi.org/10.1103/PhysRevlett.42.1079

Y. Kamihara, w. watanabe and M. hirano, J. Am. Chem. Soc. 130, 3293, (2008). http://dx.doi.org/10.1021/ja800073m

K. Tanabe and h. hosono, Jpn. J. Appl. Phys. 51, 010005, (2012). http://dx.doi.org/10.1143/JJAP.51.113101

A.I. buzdin and A.S. Mel’nikov, Phys. Rev. b 67, 020503, (2003). http://dx.doi.org/10.1103/PhysRevb.67.184519

F. Canepa, P. Manfrinetti, M. Pani, and A. Palenzona, J. Alloys Comp. 234, 225 (1996). http://dx.doi.org/10.1016/0925-8388(95)02037-3

b. lloret, Ph.D. thesis, university bordeanz I, (1988).

A. de Visser, N.T. huy, A. Gasparini, D.E. de Nijs, D. Andreica, C. baines, and A. Amato, Phys. Rev. lett. 102, 167003, (2009). http://dx.doi.org/10.1103/PhysRevlett.102.167003

N.T. huy and A. de Visser, Solid State Comm. 149, 703, (2009). http://dx.doi.org/10.1016/j.ssc.2009.02.013

A. Gasparini, Y. K. Huang, N. T. Huy, J. C. P. Klaasse, T. Naka, E. Slooten, and A. De Visser, J. low Temp. Phys. DOI 10. 1007/s 10909 – 010 – 0188- 1 (Online 18 June, 2010).

K. Machida, Appl. Phys. A35, 193, (1984). http://dx.doi.org/10.1007/bF00617170

D. Akoi, F. Hardy, A. Miyake, V. Taufour, T. D. Matsuda, and J. Flouquet, arXiv : 1104. 2279 v 1 [cond – mat. Str – el] (12 Apr. 2011).

A. Dommann, F. Hulliger, and T. Siegrist, J. Magn, Magn. Mat. 67 (1987) 323. http://dx.doi.org/10.1016/0304-8853(87)90191-0

E. Yamamoto,Y. haga, T.D. Matsuda, A. Nakamura, R. Settai, Y. Inada, h. Sugawara, h. Sato and Y. Onuki, J. Nucl. Sci. Technol. 3 (Suppl.) (2002) 187.

Downloads

Published

2014-08-20

How to Cite

(1)
Kakani, S. .; Nuwal, A. .; Kakani, S. L. . Theoretical Study of Interplay Between Superconductivity and Itinerant Ferromagnetism. J. Nucl. Phy. Mat. Sci. Rad. A. 2014, 2, 33-71.

Issue

Section

Articles