Prospects of Dark Matter Direct Search under Deep Sea Water in India

Authors

  • V. Singh Physics Department, Banaras Hindu University, Varanasi 221005, India
  • V. S. Subrahmanyam Physics Department, Banaras Hindu University, Varanasi 221005, India
  • L. Singh Physics Department, Banaras Hindu University, Varanasi 221005, India
  • M. K. Singh Physics Department, Banaras Hindu University, Varanasi 221005, India
  • V. Sharma Physics Department, Banaras Hindu University, Varanasi 221005, India
  • N. S. Chouhan Physics Department, Banaras Hindu University, Varanasi 221005, India
  • M. K. Jaiswal Physics Department, Banaras Hindu University, Varanasi 221005, India
  • A. K. Soma Physics Department, Banaras Hindu University, Varanasi 221005, India

DOI:

https://doi.org/10.15415/jnp.2013.11004

Keywords:

Dark matter, elastic scattering, detection, sea water shielding

Abstract

There is compelling evidence from cosmological and astrophysical observations that about one quarter of theenergy density of the universe can be attributed to cold dark matter (CDM), whose nature and properties are still unknown. Around the world large numbers of experiments are using different techniques of dark matter direct and indirect detections. According to their experimental requirements location of the experiment prefer to use either underground, under ice, or under sea water. In a country like India, digging underground cavern and long tunnel is not very convenient. Therefore, authors look from the other solutions of this problem preferring to use deep sea water. In this article, we discuss the pros and corns of use of deep sea water in the dark matter search.

Downloads

Download data is not yet available.

References

R. J. Gaitskell, Annu. Rev. Nucl. Part. Sci. 54, 315 (2004). http://dx.doi.org/10.1146/annurev.nucl.54.070103.181244

H. H. Haber and M. Schmitt, J. Phys. G 33, 1105 (2006).

A. Bottino et al., Phys. Rev. D 72, 083521 (2005). http://dx.doi.org/10.1103/PhysRevD.72.083521

C. Savage, P. Gondolo, K. Freese, Phys. Rev. D 70, 123513 (2004); http://dx.doi. org/10.1103/PhysRevD.70.123513 P. Gondolo and G. Gelmini, Phys. Rev. D 71, 123520 (2005); http://dx.doi.org/10.1103/PhysRevD.71.123520 R. Bernabei et al., Riv. Nuovo Cimento Soc. Ital. Fis. 26N1, 1 (2003).

R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008), www.ntis.gov/search/product. aspx?ABBR=DE200515 010373.

J. Aguilar et al., NIM A 656, 11 (2011). http://dx.doi.org/10.1016/j.nima.2011.06.103

D. L. Upp et al., J. Radioanalytical and Nucl. Chem, 264, 121 (2005). http://dx.doi.org/10.1007/s10967-005-0684-y

R. L. Coleman, J. S. Bogard and M. E. Murray, (2002), www.ornl.gov/~webworks/cppr/ y2001/rpt/115263.pdf. www.kgw-isotherm.com/downloads/ww.windows2universe.org/ earth/Water/temp.html.

S. Higashi et al., IL Nuov Cime XLIII, 334 (1966). http://dx.doi.org/10.1007/BF02752862

R. J. Arthur et al., (2003) www.osti.gov/bridge/product.biblio.jsp?osti_id=15 010373.

Downloads

Published

2013-08-09

How to Cite

(1)
Singh, V. .; Subrahmanyam, V. S. .; Singh, L. .; Singh, M. K. .; Sharma, V. .; Chouhan, N. S. .; Jaiswal, M. K. .; Soma, A. K. . Prospects of Dark Matter Direct Search under Deep Sea Water in India. J. Nucl. Phy. Mat. Sci. Rad. A. 2013, 1, 37-43.

Issue

Section

Articles