Elemental Analysis of Nanomaterial Using Photon-Atom Interaction Based EDXRF Technique

Authors

  • Sanjeev Kumar G.G.D.S.D. College Sector-32, Chandigarh
  • Arun Kumar Department of Physics, Panjab University, Chandigarh
  • Mansi Chitkara Nanomaterials Research Laboratory, Chitkara University, Rajpura 140401, Punjab, India
  • I. S. Sandhu Nanomaterials Research Laboratory, Chitkara University, Rajpura 140401, Punjab, India
  • Devinder Mehta Department of Physics, Panjab University, Chandigarh

DOI:

https://doi.org/10.15415/jnp.2013.11006

Keywords:

Nanomaterial, EDXRF Technique, Photon-Atom Interaction

Abstract

Presence of trace amount of foreign impurities (both metallic and non-metallic) in standard salts used for sample preparation and during the synthesis process can alter the physical and chemical behavior of the pure and doped nano-materials. Therefore, it becomes important to determine concentration of various elements present in synthesized nano-material sample. In present work, the elemental and compositional analysis of nano-materials synthesized using various methods has been performed using photon-atom interaction based energy dispersive x-ray fluorescence (EDXRF) technique. This technique due to its multielement analytical capability, lower detection limit, capability to analyze metals and non-metals alike and almost no sample preparation requirements can be utilized for analysis of nano-materials. The EDXRF spectrometer involves a 2.4 kW Mo anode x-ray tube (Pananalytic, Netherland) equipped with selective absorbers as an excitation source and an LEGe detector (FWHM = 150 eV at 5.895 keV, Canberra, US) coupled with PC based multichannel analyzer used to collect the fluorescent x-ray spectra. The analytical results showed good agreements with the expected values calculated on the basis of the precursor used in preparation of nano-materials.

Downloads

Download data is not yet available.

References

C.S. Iijima, Nature 354, 56 (1991). http://dx.doi.org/10.1038/354056a0

S.J. Tans, A.R.M. Verschueren and C. Dekker, Nature 393, 49 (1998). http://dx.doi.org/10.1038/29954

J.A. Misewich, R. Martel, P. Avouris, J.C. Tsang, S. Heinze and J. Tersoff, Science 300, 783 (2003). http://dx.doi.org/10.1126/science.1081294

K. Liu, M. Burghard, S. Roth and P. Bernier, Appl. Phys. Lett. 75, 2494 (1999). http://dx.doi.org/10.1063/1.125059

Y. Huang, X.F. Duan, Y. Cui and C.M. Lieber, Nano Lett. 21, 01 (2002).

M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl and P. L. McEuen, Science 288, 494 (2000). http://dx.doi.org/10.1126/science.288.5465.494

Z. Yao, H.W.C. Postma, L. Balents and C. Dekker, Nature 402, 273 (1999). http://dx.doi.org/10.1038/46241

Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim and C. M. Lieber, Science 294 , 1313 (2001). http://dx.doi.org/10.1126/science.1066192

M.R. Diehl, S.N. Yaliraki, R.A. Beckman, M. Barahona and J.R. Heath, Angew. Chem. Int. Ed. 41, 353 (2002). http://dx.doi.org/10.1002/1521-3773(20020118)41:2<353::AID ANIE353>3.0.CO;2-Y

P.C. Collins, M.S. Arnold and P. Avouris, Science 292, 706, (2001). http://dx.doi.org/10.1126/science.1058782

J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang and A.P. Alivisatos, Science 292, 2060 (2001). http://dx.doi.org/10.1126/science.1060810

R. Cesareo, Nucl. Instrum. and Meth. B 150, 571 (1999). http://dx.doi.org/10.1016/S0168-583X(98)01062-3

S. Puri, J.S. Shahi, B. Chand, M.L.Garg, Nirmal Singh and P.N. Trehan, X-ray spectrometry 27, 105 (1998). http://dx.doi.org/10.1002/(SICI)1097-4539(199803/04)27:2<105::AIDXRS258>3.0.CO;2-W

S. Kumar, S. Singh, D. Mehta, M.L. Garg, P.C. Mangal and P.N. Trehan, X-ray spectrometry 18, 207 (1989). http://dx.doi.org/10.1002/xrs.1300180505

A.G. Karydas and T. Paradellis, X-ray spectrometry 22, 208 (1993). http://dx.doi.org/10.1002/xrs.1300220408

F.J. Pantenburg, T. Beier, F. Hennrich and H. Mommsen, Nucl. Instrum. and Meth. B 68, 125 (1992). http://dx.doi.org/10.1016/0168-583X(92)96063-5

V.D. Martinez, C.M. Hidalgo and R.A. Barrea, X-ray spectrometry 29, 245 (2000). http://dx.doi.org/10.1002/(SICI)1097-4539(200005/06)29:3<245::AIDXRS429>3.0.CO;2-O

M. Manter and M. Schreiner, X-ray spectrometry 29, 3 (2000). http://dx.doi.org/10.1002/(SICI)1097-4539(200001/02)29:1<3::AIDXRS398>3.0.CO;2-O

R. Speller, X-ray spectrometry 28, 22 (1999). http://dx.doi.org/10.1002/(SICI)1097-4539(199907/08)28:4<224::AIDXRS343>3.0.CO;2-F

K. Molt and R. Schramm, X-ray spectrometry 28, 22 (1999). http://dx.doi.org/10.1002/(SICI)1097-4539(199901/02)28:1<59::AIDXRS310>3.0.CO;2-N

K.E. Miyano, Y. Ma, S.W. Southworth, P.L. Cowan and B.A. Karlin, Phys. Rev. B 54, 12022 (1996). http://dx.doi.org/10.1103/PhysRevB.54.12022

Y. Udagawa and K. Tohji , Chem. Phys. Lett. 148, 101 (1988). http://dx.doi.org/10.1016/0009-2614(88)80283-5

L.D. Pra, E. Ferain, R. Legras and S.D. Champagne, Nucl. Instr. and Meth. B 196, 81.

M. Sima, I. Enclescu, C. Trautmann and R. Neumann, J. Optoelec. & Adv. Mater. 6, 121 (2004).

B.E. Fischer and R. Spohr, Rev. Mod. Phys. 55, 907 (1983). http://dx.doi.org/10.1103/RevModPhys.55.907

M.E.T. Molares, E.M. Hohberger, C. Schaeflein, R.H. Blick, R. Neumann and C. Trautmann, Appl. Phys. Lett. 82, 2139 (2003). http://dx.doi.org/10.1063/1.1563741

Downloads

How to Cite

(1)
Kumar, S. .; Kumar, A. .; Chitkara, M. .; Sandhu , I. S. .; Mehta, D. . Elemental Analysis of Nanomaterial Using Photon-Atom Interaction Based EDXRF Technique. J. Nucl. Phy. Mat. Sci. Rad. A. 2013, 1, 61-70.

Issue

Section

Articles