Partial as Well as Total Photon Interaction Effective Atomic Numbers for Some Concretes

Authors

  • Tejbir Singh Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
  • Parjit S. Singh Department of Physics, Punjabi University, Patiala-147002, Punjab, India.

DOI:

https://doi.org/10.15415/jnp.2013.11009

Keywords:

Photon interactions, mass attenuation coefficient, effective atomic number, concrete

Abstract

Photon interaction effective atomic number (Zeff) for partial as well as total photon interaction processes has been computed using logarithmic interpolation method for seven different concretes viz. (i) Ordinary, (ii) Hematite - Serpentine, (iii) Ilmenite - Limonite, (iv) Basalt - magnetite, (v) Ilmenite, (vi) Steel - scrap and (vii) Steel - magnetite concrete in the wide energy range from 10.0 keV to 100 GeV. It has been concluded that this method has an advantage over the atomic to electronic cross-section ratio method especially for mixtures in the intermediate energy level. However, due to lack of experimental data in the higher energy region, it is difficult to discuss, its validity in these energy regions.

Downloads

Download data is not yet available.

References

Hine G.J., 1952. The Effective Atomic Numbers of Materials forVarious Gamma Ray Interactions. Phy. Rev., 85, 725.

Singh T., Kaur P., Singh P.S., 2007. A study of photon interaction parameters in some commonly used solvents. J. Radiol. Prot., 27, 79-85. http://dx.doi.org/10.1088/0952-4746/27/1/005

Singh T., Kaur P., Singh P.S., 2007a. Variation of mass attenuation coefficient, effective atomic number and electron density with incident photon energy of some organic acids. Nucl. Sci. Engg. 156, 229-243.

Kurudirek M., Buyukyildiz M., Ozdemir Y., 2010. Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV–100 GeV. Nucl. Instru. Meth. A. 613, 251-256. http://dx.doi.org/10.1016/j.nima.2009.11.061

Mudahar G.S., Modi S., Singh M., 1991, Energy dependence of the effective atomic numbers of soils, Ind. J. Phys. 65B, 226.

Kaewkhao J., Limsuwan P., 2010. Mass attenuation coefficients and effective atomic numbers in phosphate glass containing Bi2O3, PbO and BaO at 662 keV. Nucl. Instru. Meth. A. 619, 295-297. http://dx.doi.org/10.1016/j.nima.2009.11.033

Icelli O., Erzeneoglu S., Saglam M., 2008. Effective atomic numbers of polypyrrole via transmission method in the energy range 15.74–40.93 keV. Ann. Nucl. Energy. 35, 432437. http://dx.doi.org/10.1016/j.anucene.2007.07.007

Gowda S., Krishnaveni S., Yashoda T., Umesh T.K., Gowda R., 2004. Photon Mass Attenuation Coefficients, Effective Atomic Numbers and Electron Densities of Some Thermoluminescent Dosimetric Compounds Pramana J. of Phys. 63, 529-541.

Abdo El-S., 2002, Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields, Ann. Nucl. Energy 29, 1977-1988. http://dx.doi.org/10.1016/S0306-4549(02)00019-1

Bashter I.I., 1997. Calculation of radiation attenuation coefficients for shielding concretes Ann. Nucl. Energy 24, 1389-1401. http://dx.doi.org/10.1016/S0306-4549(97)00003-0

Akkurt I., Basyigit C., Kilincarslan S., Mavi B., Akkurt A., 2006. Radiation shielding of concretes containing different aggregates. Cem. Conc. Comp. 28, 153-157. http://dx.doi.org/10.1016/j.cemconcomp.2005.09.006

Kharita M.H., Yousef S., AlNassar M., 2009. The effect of carbon powder addition on the properties of hematite radiation shielding concrete. Prog. Nucl. Energy. 51, 388-392. http://dx.doi.org/10.1016/j.pnucene.2008.10.002

Gerward L., Guilbert N., Jensen K.B., Levring H., 2001. X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23-24. http://dx.doi.org/10.1016/S0969-806X(00)00324-8

Downloads

Published

2013-08-09

How to Cite

(1)
Singh, T. .; Singh, P. S. . Partial As Well As Total Photon Interaction Effective Atomic Numbers for Some Concretes. J. Nucl. Phy. Mat. Sci. Rad. A. 2013, 1, 97-105.

Issue

Section

Articles