Feasibility of Formation of Ge1-x-y Six Sny Layers With High Sn Concentration via Ion Implantation

Authors

  • Randall L. Holliday Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Joshua M. Young Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Satyabrata Singh Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Floyd D. McDaniel Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA
  • Bibhudutta Rout Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas-76203, USA

DOI:

https://doi.org/10.15415/jnp.2020.72006

Keywords:

Photovoltaic cells, Ion implantation, Depth profile, Dynamic simulations

Abstract

By increasing the Sn concentration in Ge1-ySny and Ge1-x-ySixSny systems, these materials can be tuned from indirect to direct bandgap along with increasing electronic and photonic properties. Efforts have been made to synthesize Sn-Ge and Ge-Si-Sn structures and layers to produce lower energy direct bandgap materials. Due to low solid solubility of Sn in Ge and Si-Ge layers, high concentrations of Sn are not achieved by traditional synthesis processes such as chemical vapor deposition or molecular beam epitaxy. Implantation of Sn into Si-Ge systems, followed by rapid thermal annealing or pulse laser annealing, is shown to be an attractive technique for increasing Sn concentration, which can increase efficiencies in photovoltaic applications. In this paper, dynamic ion-solid simulation results are presented. Simulations were performed to determine optimal beam energy, implantation order, and fluence for a multi-step, ion-implantation based synthesis process.

Downloads

Download data is not yet available.

References

P. Zaumseil, Y. Hou, M. A. Schubert, N. V. D. Driesch, D. Stange, D. Rainko, M. Virgilio, D. Buca, G. Capellini., APL Materials 6, 076108 (2018). https://doi.org/10.1063/1.5036728

C. Xu, L. Jiang, J. Kouvetakis, J. Menéndez, Appl. Phys. Lett. 103, 072111 (2013).https://doi.org/10.1063/1.4818673

John Kouvetakis, John Tolle, RadekRoucka, Vijay R. D’Costa, Yan-yan Fang, Andrew V. Chizmeshya, Jose Menendez., ECS Trans. 16, 807 (2008). https://doi.org/10.1149/1.2986840

D. Rainko, Z. Ikonic, N. Vukmirović, D. Stange, N. V. D. Driesch, D. Grützmacher & D. Buca, Scientific Reports 8, 15557 (2018). https://doi.org/10.1038/s41598-018-33820-1

T. T. Tran, D. Pastor, H. H. Gandhi, L. A. Smillie, A. J. Akey, M. J. Aziz and J. S. Williams, Journal of Applied Physics 119, 183102 (2016). https://doi.org/10.1063/1.4948960

B. Rout, M. S. Dhoubhadel, P. R. Poudel, V. C. Kummari, B. Pandey, N. T. Deoli, W. J. Lakshantha, S. J. Mulware, J. Baxley, J. E. Manuel, J. L. Pacheco, S. Szilasi, D. L. Weathers, T. Reinert, G. Glass, J. L. Duggan, F. D. McDaniel, IX International Symposium on Radiation Physics, Puebla, Mexico, April 14-17, 2013, AIP Conference Proceedings 1544, 11 (2013). https://doi.org/10.1063/1.4813454

A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, IPP Report 12/8 Garching, (2011).

W. J. Lakshantha, V. C. Kummari, T. Reinert, F. D. McDaniel, B. Rout, Nucl. Inst. And Meth. B 332, 33 (2014). https://doi.org/10.1016/j.nimb.2014.02.024

J. F. Ziegler, M. D. Ziegler and J. P. Biersack, Nuclear Instruments and Methods in Physics 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

V. R. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis and J. Menéndez, Phys. Rev. Lett. 102, 107403 (2009). https://doi.org/10.1103/PhysRevLett.102.107403

T. Yamaha, S. Shibayama, T. Asano, K. Kato, M. Sakashita, W. Takeuchi, O. Nakatsuka and S. Zaima, Appl. Phys. Lett. 108, 061909 (2016). https://doi.org/10.1063/1.4941991

Downloads

Published

2020-02-28

How to Cite

(1)
Holliday, R. L. .; Young, J. M. .; Singh, S. .; McDaniel, F. D. .; Rout, B. . Feasibility of Formation of Ge1-X-Y Six Sny Layers With High Sn Concentration via Ion Implantation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 65-70.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.