Analysis of Indoor Radon Distribution Within a Room By Means of Computational Fluid Dynamics (CFD) Simulation

  • A. Lima Flores Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla-72570, Mexico
  • R. Palomino-Merino Faculty of Physical Mathematical Sciences, Meritorious Autonomous University of Puebla (BUAP), San Claudio Avenue and 18th south street, Puebla-72570, Mexico
  • V.M. Castano Center for Applied Physics and Advanced Technology, National Autonomous University of Mexico, Juriquilla Boulevard number 3001, 76230 Santiago De Querétaro, Querétaro, Mexico
  • G. Espinosa Institute of Physics, National Autonomous University of Mexico (UNAM), 04520 Mexico City, Mexico
Keywords: Radiological Protection, Radon-222 Distribution, Computational Fluid Dynamics (CFD)

Abstract

Radon gas is recognized by international organizations such as the United States Environmental Protection Agency (US-EPA) as the main contributor of radiation environmental to which human beings are exposed. Therefore, the evaluation of indoor radon concentration is a matter of public interest. The emanation and the income of the gas inside a room will generate a negative impact on the quality of the air when the place is not properly ventilated. Understanding how this gas will be distributed inside the room will allow to predict the spatial and temporal variations of radon levels and identify these parameters will provide important information that researchers can be used for calculate radiation dose exposure. Consequently, this studies can prevent a health risk for the people that live or work within the room. Currently, several researchers use the technique called Computational Fluid Dynamics (CFD) to simulate the distribution of gas radon, making use of the various commercial programs that exist in the market. In this work, three simulations were developed in rooms that have a similar geometry but different dimensions, in order to observe how the gas is distributed inside a closed space and to analyze how this distribution varies when the volume of the place is increased. The results show that as the volume of the site increases the radon is mitigated more rapidly and therefore has lower levels of concentration of this gas, as long as the level of radon emanation is kept constant.

References

W. Dyck, Handbook of Exploration Geochemistry (Elsevier Science Ltd, The Netherlands, 2000), Vol. 7, Chap. 11, p. 353.

C.R. Cothern, Environmental Radon (Springer Science + Business Media, LLC, New York, 1987), Chap. 4, p. 81.

M. Al-Zoughool and D. Krewski, Int. J. Radiat. Biol. 85, 57 (2009). https://doi.org/10.1080/09553000802635054

A. Lima Flores, R. Palomino-Merino, E. Espinosa, V.M. Castaño, E. Merlo Juarez, M. Cruz Sánchez, and G. Espinosa, J. Nucl. Phy. Mat. Sci. Rad. A 4, 325 (2016). https://doi.org/10.15415/jnp.2016.41008

G. Espinosa and R.B. Gammage, Appl. Radiat. lsot. 44, 719 (1993). https://doi.org/10.1016/0969-8043(93)90138-Z

G. Espinosa, L. Manzanilla and R.B. Gammage, Radiat. Meas. 28, 667 (1997). https://doi.org/10.1016/S1350-4487(97)00161-3

C. Lee and D. Lee, Ann of Occup. and Environ Med. 28, 14 (2016). https://doi.org/10.1186/s40557-016-0097-0

G. Espinosa, J.I. Golzarri, A. Chavarria, and V.M. Castaño, Radiat. Meas. 50, 127 (2013). https://doi.org/10.1016/j.radmeas.2012.09.010

A. Lima Flores, R. Palomino-Merino, E.Moreno-Barbosa, J.N. Domínguez-Kondo, V.M. Castaño, A.C. Chavarría Sánchez, J.I. Golzarri, and G. Espinosa, J. Nucl. Phy. Mat. Sci. Rad. A 6, 61 (2018). https://doi.org/10.15415/jnp.2018.61010

United States Environmental Protection Agency, https://www.epa.gov/radiation/what-radon-gas-it-dangerous

G. Espinosa, Trazas Nucleares en Sólidos (Universidad Nacional Autónoma de México, Distrito Federal, 1994).

N. Chauhan, R.P. Chauhan, M. Joshi, T.K. Agarwal, P. Aggarwal, and B.K. Sahoo, J. Environ. Radioact. 136, 105 (2014). https://doi.org/10.1016/j.jenvrad.2014.05.020

J. Chen, N.M. Rahman, and I. Abu-Atiya, J. Environ. Radioact. 101, 317 (2010). https://doi.org/10.1016/j.jenvrad.2010.01.005

G. Keller, B. Hoffmann, and T. Feigenspan, Sci. Total Environ. 272, 85 (2001). https://doi.org/10.1016/s0048-9697(01)00669-6

A. Kumar, R.P. Chauhan, M, Joshi, and B.K. Sahoo, J. Environ. Radioact. 127, 50 (2014). https://doi.org/10.1016/j.jenvrad.2013.10.004

B.P. Jelle, K. Noreng, T.H. Erichsen and T. Strand, J. Build. Phys. 34, 195 (2011). https://doi.org/10.1177/1744259109358285

K. Akbari, J. Mahmoudi, and M. Ghanbari, J. Environ. Radioact. 116, 166 (2013). https://doi.org/10.1016/j.jenvrad.2012.08.013

V. Urosevic, D. Nikezic, and S. Vulovic, J. Environ. Radioact. 99, 1829 (2008). https://doi.org/10.1016/j.jenvrad.2008.07.010

W. Zhuo, T. Iida, J. Morizumi, T. Aoyagi, and I. Takahashi, Radiat. Prot. Dosim. 93, 357 (2001). https://doi.org/10.1093/oxfordjournals.rpd.a006448

C.E. Andersen, Sci. Total Environ. 272, 33 (2001). https://doi.org/10.1016/S0048-9697(01)00662-3

Published
2020-02-28
How to Cite
(1)
A. Lima Flores; R. Palomino-Merino; V.M. Castano; G. Espinosa. Analysis of Indoor Radon Distribution Within a Room By Means of Computational Fluid Dynamics (CFD) Simulation. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 89-95.
Section
Articles