Characterizing a Mini Gamma Detector

Authors

  • E. Marquez-Quintos Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • E. Moreno-Barbosa Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • J. E. Espinosa Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • Benito de Celis Alonso Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • Margarita Amaro Aranda Faculty of Electronics Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico
  • R. Palomino Merino Faculty of Mathematical Physical Sciences, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Mexico

DOI:

https://doi.org/10.15415/jnp.2020.72020

Keywords:

Gamma ray, Crystal Scintillator, Spectrophotometer, Calibration

Abstract

There are several types of gamma radiation detectors, which have different characteristics depending on its use. We designed and instrumented a gamma detector for low energies of a small and portable size to obtain spectrum from radioactive sources and from that analyze each spectrum. This instrument basically consists of a scintillator crystal coupled to a SiPM this in turn coupled to a PCB card designed with capacitors and resistors for a better signal, a voltage source of 29 volts. For signal acquisition the system must be connected to an oscilloscope this in turn is controlled by a script developed in Python. For the calibration radioactive isotopes with the same dimensions were used, caesium-137 (Cs-137), cobalto-60 (Co-60), sodium-22 (Na-22) and manganese-54 (Mn-54) as gamma ray emission.

Downloads

Download data is not yet available.

References

Knoll, Glenn F. Radiation detection and measurement. John Wiley & Sons, 2010.

V. Saveliev, and V. Golovin, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 442, 223 (2000). https://doi.org/10.1016/S0168-9002(99)01225-5

M.T. Madsen, Journal of Nuclear Medicine 48, 661 (2007). https://doi.org/10.2967/jnumed.106.032680

O. H. Nestor and C. Y. Huang, IEEE Transactions on Nuclear Science 22, 68 (1975). https://doi.org/10.1109/TNS.1975.4327617

Root Analysis Framework, http://root.cern.ch

C. Jackson et al., Proceedings 9359, Optical Components and Materials XII; 93591C (2015). https://doi.org/10.1117/12.2076898

L. Schlattauer et al., European Journal of Physics 38, 055806 (2017). https://doi.org/10.1088/1361-6404/aa7a7a

Downloads

Published

2020-02-28

How to Cite

(1)
Marquez-Quintos, E. .; Moreno-Barbosa, E. .; Espinosa, J. E. .; Alonso, B. de C. .; Aranda, M. A. .; Merino, R. P. . Characterizing a Mini Gamma Detector. J. Nucl. Phy. Mat. Sci. Rad. A. 2020, 7, 159-163.

Issue

Section

Articles