Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface

  • M. Caldera-Villalobos Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • B. Leal-Acevedo Radiation Safety and Radiation Unit, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
  • V.M. Velázquez-Aguilar Faculty of Sciences, National Autonomous University of Mexico.. Ciudad Universitaria, 04510, Ciudad de México, México
  • M. D. P. Carreón-Castro Department of Radiation Chemistry and Radiochemistry, Institute of Nuclear Sciences, National Autonomous University of Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, México
Keywords: Ionizing radiation, Graft copolymer, Biobased polymers, Polymer coatings, LB films

Abstract

Graft polymerization induced by ionizing radiation is a powerful tool in materials science to modifying the physical properties of polymers. Chitosan is a biocompatible, biodegradable, antibacterial, and highly hydrophilic polysaccharide. In this work, we report the obtaining of amphiphilic polymers through graft polymerization of acrylic monomers (methyl acrylate, t-butyl acrylate, and hexyl acrylate) onto chitosan. The polymerization reaction was carried out by simultaneous irradiation of monomers and chitosan using a gamma radiation source of 60Co. The formation of Langmuir films of amphiphilic polymers was studied at the air-water interface through surface pressure versus main molecular area isotherms (Π-A) and hysteresis cycles of compression and decompression. Finally, it was analyzed the transferring of Langmuir films towards solid substrates to obtaining Langmuir-Blodgett films with potential application as an antibacterial coating. The microstructure of the Langmuir-Blodgett films was characterized by AFM microscopy observing a regular topography with roughness ranging between 0.53 and 0.6 μm.

Downloads

Download data is not yet available.

References

A. Charlesby, in Proceedings of the Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1966, Pocono Manor, USA, edited by IEEE, 1966.

A. L. El Hadrami, I. El Hadrami, and F. Daayf, Mar. Drugs. 8, 968 (2010). https://doi.org/10.3390/md8040968

S. Ausar, I. Bianco, R. Badini, L. Castagna, N. Modesti, C. Landa, and D. Beltramo, J. Dairy Sci. 84, 361 (2001). https://doi.org/10.3168/jds.S0022-0302(01)74485-2

M. M. Rocha, M. Coimbra, and C. Nunes., Curr. Opin. Food Sci. 15, 61 (2017). https://doi.org/10.1016/j.cofs.2017.06.008

F. Gassara, C. Antzak, C. Ajila, S. Sarma, S. Brar, and M. Verma, J. Food Eng. 166, 80 (2015). https://doi.org/10.1016/j.jfoodeng.2015.05.028

H. Kurtbay, Z. Bekçi, M. Merdivan, and K. Yurdakoç, J. Agr. Food Chem. 56, 2541 (2008). https://doi.org/10.1063/1.5092422

O. Tastan, and T. Baysal, Food Chem. 237, 818 (2017). https://doi.org/10.1016/j.foodchem.2017.06.025

A. Martín Diana, D. Rico, J. Barat, and C. Barry, Ryan. Innov. Food Sci. Emerg. 10, 590 (2009). https://doi.org/10.1016/j.ifset.2009.05.003

O. Tastan, and T. Braysal, Food Chem. 180, 211 (2015). https://doi.org/10.1016/j.foodchem.2015.02.053

R. Castro Domingues, S. Braz Faria Junior, R. Berdardes Silva, V. Cardoso, and M. Hespanhol Miranda Reis, Process Biochem. 47, 467 (2012). https://doi.org/10.1016/j.procbio.2011.12.002

H. Liu, H. Li, W. Cheng, Y. Yang, and M. Z. C. Zhu, Acta Biomater. 2, 557 (2006). https://doi.org/10.1016/j.actbio.2006.03.007

H. Xu, and C. Simon, Jr. Biomaterials. 26, 1337 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.043

Y. Sun, A. Chen, W. Sun, K. Shah, H. Zheng, and C. Zhu., Desalin. Water Treat. 148, 259 (2019). https://doi.org/10.5004/dwt.2019.23953

Y. Sun, M. Ren, W. Sun, X. Xiao, Y. Xu, H. W. H. Zheng, Z. Lui, and H. Zhu., Environ. Technol. 40, 954 (2017).https://doi.org/10.1080/09593330.2017.1414312

H. Harslan, U. Aytaç, T. Bilir, and S. Sen, Constr. Build. Mater. 204, 541 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.209

Lu. D., H. Wang, X. Wang, Y. Li, H. Guo, S. Sun, X. Zhao, Z. Yang, and Z. Lei, Carbohyd. Polym. 215, 20 (2019). https://doi.org/10.1016/j.carbpol.2019.03.065

A. Ibrahim, A. Saleh, E. Elsharma, E. Metwally, and T. Siyam, Int. J. Biol. Macromol. 121, 1287(2019). https://doi.org/10.1016/j.ijbiomac.2018.10.107

Y. Zhou, P. Dong, Y. Wei, J. Qian, and D. Hua, Colloid Surface B: Biointerfaces 132, 132(2015). https://doi.org/10.1016/j.colsurfb.2015.05.019

W. Pasaphan, T. Rattanawongwiboon, P. Rimdusit, and T. Piroonpan, Rad. Phys. Chem. 94, 199 (2014). https://doi.org/10.1016/j.radphyschem.2013.06.026

T. Rattanawongwiboon, K. Haema, and W. Pasanphan. Rad. Phys. Chem. 94, 205 (2014). https://doi.org/10.1016/j.radphyschem.2013.05.039

M. Abdel Aziz, H. Naguib, and G. Saad, Int. J. Polym. Mater. Po.64. 578 (2014). https://doi.org/10.1080/00914037.2014.996707

M. González Torres, S. Vargas Muñoz, S. Solís Rosales, M. Carreón Castro, R. Esparza Muñoz, R. Olayo González, M. Estévez González, and R. Rodríguez Talavera, Carbohyd. Polym. 133, 482 (2015). https://doi.org/10.1016/j.carbpol.2015.07.032

Published
2020-02-28
How to Cite
M. Caldera-Villalobos, B. Leal-Acevedo, V.M. Velázquez-Aguilar, & M. D. P. Carreón-Castro. (2020). Graft-Copolymerization of Acrylate Monomers onto Chitosan Induced by Gamma Radiation: Amphiphilic Polymers and Their Behavior at The Air-Water Interface. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 7(2), 209-215. https://doi.org/10.15415/jnp.2020.72027
Section
Articles