Hydrochemistry and Uranium Concentration in Brackish Groundwater from an Arid Zone, Chihuahua, Mexico


  • Renteria-Villalobos Marusia Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología, Periférico Francisco R. Almada km 1, 31415, Chihuahua, Chih, México https://orcid.org/0000-0003-0509-5865
  • Mendieta-Mendoza Aurora Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología, Periférico Francisco R. Almada km 1, 31415, Chihuahua, Chih, México
  • Montero-Cabrera María Elena Centro de Investigación de Materiales Avanzados. Vigilancia Radiológica Ambiental. Avenida Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31136, Chihuahua, México
  • Manjón-Collado Guillermo Universidad de Sevilla. Departamento de Física Aplicada II. Avda. Reina Mercedes 2, 41012 Sevilla, España
  • Galván-Moreno José Antonio Universidad de Sevilla. Departamento de Física Aplicada II. Avda. Reina Mercedes 2, 41012 Sevilla, España




Radioactivity, Radiochemistry methods, Nitrates, Agriculture


In arid zones, the principal water supply is from groundwater, which can present high concentration of salts, heavy metals, and radioactive elements. The aim of the study was to determine isotopic uranium concentration in groundwater samples with high concentration of salts and its association with other chemical species. Samples were taken from wells with high salt content. The 238,234U radioisotope concentrations were determined by liquid scintillation and alpha-particle spectrometry. In addition, the physical-chemical parameters were recorded in situ; whereas the dissolved ions and elemental composition were measured by UV-Vis and X-ray fluorescence spectrophotometry, respectively. To obtain isotopic uranium concentrations, three radiochemistry procedures were carried out. An ANOVA test was performed to compare the results from procedures, as well as an analysis of Pearson correlation was used between parameters to obtain their associations. Statistically, the U isotopic concentrations did not show differences (p-value 0.82) between procedures. 238U and 234U showed mean concentrations of 6.7 mBq mL-1 and 16.6 mBq mL-1, respectively, with an Activity Ratioby up 7.2. The groundwater under study showed high concentration of TDS, calcium, sulphate, chloride, nitrate, and nitrite. Isotopic U concentrations tend to increase with NO3>Zn>Cl>Br>SO4>Cu>T>SDT>P; meanwhile their contents decrease with T>Cl->NO2>Fe. These findings help us to understand the uranium behavior in groundwater with high salt contents as well as the influence of agricultural supplies on chemical species presents in groundwater.


Download data is not yet available.


C.G. Méndez-García, M.Y. Luna-Porres, M.E. Montero-Cabrera, M. Renteria-Villalobos, B. Pérez-Cázares and R. García-Tenorio, Journal of Soils and Sediments 16, 1970 (2016). https://doi.org/10.1007/s11368-016-1400-y

S. Selvakumar, K. Ramkumar, N. Chandrasekar, N.S. Magesh and S. Kaliraj, Applied Water Science 7, 411 (2017). https://doi.org/10.1007/s13201-014-0256-9

L.C. Sujo, M.E.M. Cabrera, L. Villalba, M.R. Villalobos, E.T. Moye, M.G. León, R. García-Tenorio, F.M. García, E.F.H. Peraza and D.S. Arochee, Journal of Environmental Radioactivity 77, 205 (2004). https://doi.org/10.1016/j.jenvrad.2004.03.008

Mexican geological service, Mining Panorama of the State of Chihuahua. Mexican geological service: Mexico. p. 1-60 (2017).

D.M. Bonotto, Journal of Environmental Radioactivity 166, 142 (2017). https://doi.org/10.1016/j.jenvrad.2016.03.009

F.P. Carvalho, Journal of Environmental Radioactivity 102, 462 (2011). https://doi.org/10.1016/j.jenvrad.2010.10.011

Ioannidou, A., I. Samaropoulos, M. Efstathiou and I. Pashalidis, Journal of Radioanalytical and Nuclear Chemistry 289, 551 (2011). https://doi.org/10.1007/s10967-011-1115-x

V. Jobbágy, N. Kávásia, J. Somlai, B. Máté and T. Kovács, Microchemical Journal 94, 159 (2010). https://doi.org/10.1016/j.microc.2009.10.015

L. Villalba, L. Colmenero and M. Montero, Uranium and Radio activities in groundwater samples of the main cities of Chihuahua (Actividades de Uranio y Radio en muestras de agua subterránea de las principales ciudades del estado de Chihuahua). Reports on Nuclear Energy and Radiological Safety: New Challenges and Perspectives, p. 10-13 (2003).

T. Kiliari and I. Pashalidis, Journal of Radioanalytical and Nuclear Chemistry 284, 547 (2010). https://doi.org/10.1007/s10967-010-0527-3

F. Noli, N. Kazakis, G. Vargemezis & A. Ioannidou, Isotopes Environ Health Stud 52, 405 (2016). https://doi.org/10.1080/10256016.2015.1119134

CONAGUA, National Water Plan (Plan Nacional Hídrico) 2007-2012, CONAGUA: Mexico DF (2008).

J.G. Hernández, Groundwater Flow Model of the Jiménez-Camargo Aquifer (Modelo de Flujo del Agua Subterránea del Acuífero Jimenez-Camargo). in Engineering School 2012, Autonomous University of Chihuahua (Univesidad Autónoma de Chihuahua): Chihuahua. p. 120.

CONAGUA, Update of the annual average availability of water in the Jimenez-Camargo aquifer (0832), of Chihuahua (Actualización de la disponibilidad media anual del agua en el acuifero Jiménez- Camargo (0832), del Estado de Chihuahua). Official Gazette of the Federation (Diario Oficial de la Federación), 2018.

INAFED, Encyclopedia of municipalities and delegations in Mexico. Chihuahua state. Jimenez (Enciclopedia de los municipios y delegaciones en México. Estado de Chihuahua. Jiménez). 2017 February 23, 2017.

INEGI, Compendium of Municipal Geographic Information (Compendio de Información Geográfica Municipal). 2017 February 26, 2017.

NOM-014-SSA1-1993, Official Mexican Standard. Enviromental health. Sanitary Procedures for the sampling of water for human use and consumption in public and private water supply systems. (Procedimientos Sanitarios para el muestreo de agua para uso y consumo humano en sistemas de abastecimiento de agua públicos y privados). Health and Assistance Depament Mexico, 1993.

M.H. Baik, M.J. Kang, S.Y. Cho and J. Jeong, Journal of Radioanalytical and Nuclear Chemistry 304, 9 (2015). https://doi.org/10.1007/s10967-014-3699-4

Yoon, Y.Y., S.Y. Cho, and K.Y. Lee. Determination of Uranium in Groundwater Samples by Photon Electron Rejecting Alpha Liquid Scintillation Spectrometry. in Radiochemical Measurements Conference, Honolulu, Hawaii. 2001.

Caraveo-Castro, C., Study of methods for determining the activity of 234U and 238U in water and soil in the Jiménez walnut area in the State of Chihuahua. (Estudio de métodos de determinación de actividad de 234U y 238U en agua y suelo de la zona nogalera de Jiménez en el Estado de Chihuahua), in Environmental radioactivity. 2018, CIMAV.

R. Kumar, J.R. Yadav, D.D. Rao and L. Chand, Journal of Radioanalytical and Nuclear Chemistry 279, 787 (2009). https://doi.org/10.1007/s10967-008-7358-5

A. Mendieta-Mendoza, M. Rentería-Villalobos, D. Chávez-Flores, E. Santellano-Estrada, C. PinedoÁlvarez and V.H. Ramos-Sánchez, Agricultural Water Management 233, 106100 (2020). https://doi.org/10.1016/j.agwat.2020.106100

SAS, Statistical Analysis System Users´Guide 2000, Statistical Analysis System Institute, Inc.: Cary, NC.

F. Carvalho and A. Fajgelj, Water, Air, & Soil Pollution 224, 1597 (2013). https://doi.org/10.1007/s11270-013-1597-y

Z. Tosheva, K. Stoyanova and L. Nikolchev, Journal of Environmental Radioactivity 72, 47 (2004). https://doi.org/10.1016/S0265-931X(03)00185-1

F. Monroy-Guzmán, Journal of Chemistry and Chemical Engineering 10, 90 (2016). https://doi.org/10.17265/1934-7375/2016.02.005

J.R. Wood, G.A. Gill, L.-J. Kuo, J.E. Strivens and K.-Y. Choe, Industrial & Engineering Chemistry Research 55, 4344 (2016). https://doi.org/10.1021/acs.iecr.5b03680

T. Kiliari, I. Pashalidis and B. Symeopoulos, Journal of Radioanalytical and Nuclear Chemistry 292, 1273 (2012). https://doi.org/10.1007/s10967-012-1689-y

NOM-127-SSA1-1994, Official Mexican Standard. Environmental health. Water for human use and consumption-permissible quality limits and treatments to which water must be subjected for its purification (Salud ambiental. Agua para uso y consumo humanolímites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización), H. Deparment, Editor. 2000, Official Gazette of the Federation.

Environmental Protection Agency, National Primary Drinking Water Regulations. Radionuclides, 2000: USA. p. 21575-21628.

M. Rentería Villalobos, Study of Total Uranium in Groundwater in the City of Jimenez, Chihuahua. (Estudio de Uranio Total en Agua Subterránea en la Ciudad de Jiménez, Chihuahua). 2004. Cancun Joint International Congress 2004 LAS/ANS-SNM-SMSR.

M. Alkinani, W. Kanoua and B. Merkel, Environmental Earth Sciences 75, 869 (2016). https://doi.org/10.1007/s12665-016-5685-3

S. Bazán Barron, Bulletin of the Mexican Geological Society XXXIX, 25 (1978). https://doi.org/10.18268/BSGM1978v39n2a3

S.S. Makubalo and R.E. Diamond, Journal of African Earth Sciences 172, 104002 (2020). https://doi.org/10.1016/j.jafrearsci.2020.104002

L. Villalba, M.E. Montero-Cabrera, G. Manjón-Collado, L. Colmenero-Sujo, M. Rentería-Villalobos, A. Cano-Jiménez, A. Rodríguez-Pineda, I. Dávila-Rangel, L. Quirino-Torres and E.F. Herrera-Peraza, Radiation Protection Dosimetry 121, 148 (2006). https://doi.org/10.1093/rpd/nci382

M. Olías, F. González, J.C. Cerón, J.P. Bolívar, J. González-Labajo and S. García-López, Environmental Geology 55, 1555 (2008). https://doi.org/10.1007/s00254-007-1106-y

F. Chabaux, B. Bourdon and J. Riotte, Chapter 3 U-Series Geochemistry in Weathering Profiles, River Waters and Lakes. In: Radioactivity in the Environment, edited by S. Krishnaswami and J.K. Cochran, Elsevier, 2008, p.49-104. https://doi.org/10.1016/S1569-4860(07)00003-4

J.L. Guerrero, Á. Vallejos, J.C. Cerón, F. Sánchez-Martosb, A. Pulido-Bosch and J.P. Bolívara, Journal of Environmental Radioactivity 158-159, 9 (2016). https://doi.org/10.1016/j.jenvrad.2016.03.015

S.C. Priestley, T.E. Payne, J.J. Harrison, V.E.A. Post, P. Shand, A.J. Love and D.L.Wohling, Applied Geochemistry 98, 331 (2018). https://doi.org/10.1016/j.apgeochem.2018.10.002

J.N. Andrews and R.L.F. Kay, Earth and Planetary Science Letters 57, 139 (1982). https://doi.org/10.1016/0012-821X(82)90180-7

D.A. Sharma, T. Keesari, M.S. Rishi and D. Pant, Environmental Monitoring and Assessment 190, 746 (2018). https://doi.org/10.1007/s10661-018-7112-6

N. Yamaguchi, A. Kawasaki and I. Iiyama, Science of the Total Environment 407, 1383 (2009). https://doi.org/10.1016/j.scitotenv.2008.10.011

D.M. Bonotto, B. Wijesiri and A. Goonetilleke, Science of The Total Environment 693, 133655 (2019). https://doi.org/10.1016/j.scitotenv.2019.133655

J.M. Zachara, E.S. Ilton and C. Liu, Reactive transport of the uranyl ion in soils, sediments, and groundwater systems. In: Uranium–Cradle to Grave, edited by P.C. Burns and G. Sigmon, Quebec: Mineralogical Association of Canada, 2013. p.255-299.

A. Khater, Arab Journal of Nuclear Sciences and Applications 52, 119 (2019). https://doi.org/10.21608/ajnsa.2019.12389.1212

Thivya, C., S. Chidambaram, T. Keesari, M.V. Prasanna, R. Thilagavathi, V.S. Adithya and C. Singaraja, Environmental Geochemistry and Health 38, 497 (2016). https://doi.org/10.1007/s10653-015-9735-7

A.L. Charles, S.J. Markich and P. Ralph, Chemosphere 62, 1224 (2006). https://doi.org/10.1016/j.chemosphere.2005.04.089

H. Arslan and N.A. Turan, Environmental Monitoring and Assessment 187, 516 (2015). https://doi.org/10.1007/s10661-015-4725-x

S. Michikuni, M. Yuka, I. Noriko, E. Kazutaka and M. Kazuyuki, Radioactivity of fertilizer and china (NORM) in Japan. In: AIP Conference Proceedings. American Institute of Physics, 2008. https://doi.org/10.1063/1.2991238