Simulation of Dose Estimations from Solar Protons: A PMMA-Bi2O3 Shielding Model for Space Exploration

  • L. Sajo-Bohus University Simon Bolivar, Baruta 89000, Caracas, Venezuela, YV-1080A
  • J. A. López Department of Physics, University of Texas El Paso, TX, USA
  • M. Castro-Colin Bruker AXS GmbH, Karlsruhe, Germany
Keywords: Radiation, Cosmic Radiation, Spectrometry, Shielding Materials, Space Exploration, Monte-Carlo Simulations


Adverse effects of long-term exposure to galactic cosmic radiation (GCR) pose a non negligible obstacle for future space exploration programs; the high-LET-particle-rich environment has an adverse effect on human health. Concomitant to GCR we have as well solar particle radiation. Long term space exploration will rely on adequate and highly efficient shielding materials that will reduce exposure of both biosystems and electronic equipment to GCR and solar particles. The shield must attenuate efficiently heavy GCR ions, by breaking them up into less-damaging fragments and secondary radiation: biologically damaging energetic neutrons and highly charged and energetic HZE- particles. An approach to this problem is the development of shielding compounds. Shielding materials should address the conditions of different aspects of a given mission, e.g. time duration and travel path. The Monte Carlo method (GEANT4) is here employed to estimate the effects of a shielding material based on the recently developed Bi2O3-based compound (Cao et al., 2020). In the present study GEANT4 code is used to make estimations of attenuation of solar protons. The objective is to provide some insight about the effect of the new composite shield that has an intrinsic capability for dose reduction.


Download data is not yet available.


S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arcel, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman and D. Zschiesche, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003).

D. Cao, G. Yang, M. Bourham and D. Moneghan, Nuclear Engineering and Technology 52, 2613 (2020).

R. Francis, T. Estlin, G. Doran, S. Johnstone, D. Gaines, V. Verma, M. Burl, J. Frydenvang, S. Montaño, R.C. Wiens, S. Schaffer, O. Gasnault, L. DeFlores, D. Blaney and B. Bornstein, Science Robotics 2, eaan4582 (2017).

S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Sadeek and M.A. Sayyed, Results in Physics 13, 102165 (2019).

K.W. Lewis, S. Peters, K. Gonter, S. Morrison, N. Schmerr, A.R. Vasavada and T. Gabriel, Science 363, 535 (2019).

L.I. Miroshnichenko, Journal of Space Weather and Space Climate 8, A52 (2018).

J.K. Palfalvi, Y. Akatov, J. Szabo, L. Sajo-Bohus and I. Eordogh, Radiation Protection Dosimetry 120, 427 (2006).

S. Thoudam, J.P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke and J.R. Hoerandel, Astronomy and Astrophysics 595, A33 (2016).

J.W. Wilson, F.A. Cucinotta, J.L. Shinn, M.-H. Kim and F.F. Badavi, Preliminary Considerations edited by J.W. Wilson, J. Miller, A. Konradi and F. A. Cucinotta, Shielding Strategies for Human Space Exploration, NASA Conference Publication 3360. Ch. 1, pp. 3-15 (1997).

J.T. Wilson, D.J. Lawrence, P.N. Peplowski, V.R. Ecke and J.A. Kegerreis, Physical Review Research 2, 023316 (2020).

M.A. Xapsos, J.L. Barth, E.G. Stassinopoulos, S.R. Messnger, R.J. Walters, G.P. Summers, and E.A. Burke. IEEE Transactions on Nuclear Science 47, 2218 (2000).

How to Cite
Sajo-Bohus, L.; López, J. A.; Castro-Colin, M. Simulation of Dose Estimations from Solar Protons: A PMMA-Bi2O3 Shielding Model for Space Exploration. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 8, 155-160.