Surface modification of polyethylene terephthalate (PET) by corona discharge plasma

Authors

  • O. Flores Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251, Cuernavaca, Morelos, Mexico
  • B. Campillo Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251, Cuernavaca, Morelos, Mexico
  • F. Castillo Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251, Cuernavaca, Morelos, Mexico https://orcid.org/0000-0003-0746-4943
  • H. Martínez Spectroscopy Laboratory, Institute of Physical Sciences, National Autonomous University of Mexico (UNAM), PO Box 48-3, 62251, Cuernavaca, Morelos, Mexico
  • J. Colín Faculty of Chemistry and Engineering, Autonomous University of the State of Morelos, Av. Universidad # 1001, Col. Chamilpa, CP 62209, Cuernavaca, Morelos México

DOI:

https://doi.org/10.15415/jnp.2021.82016

Keywords:

Electric discharge, Corona, Atmospheric pressure, PET, SEM, Degradation

Abstract

Surface modification of polyethylene terephthalate (PET) was studied by corona discharge plasma at different exposure times using air as working gas. The modification of the surface properties are characterized, those are morphology and wettability. Corona plasma treatment was found to modify the PET surface in both morphology and wettability. The corona discharge at atmospheric pressure is a heterogeneous with multiple current pulses, which generates an asymmetric pattern of erosion on the PET surface. The corona discharge treatment erodes the surface and therefore modifies the surface morphology. The roughness of the PET surface increases in the impact point of the corona discharge on the PET surface. An increase in the wettability of PET was also observed after corona discharge treatment at atmospheric pressure.

Downloads

Download data is not yet available.

References

D. Spaseska and M. Civkaroska, Journal of the University of Chemical Technology and Metallurgy 45, 379 (2010).

A. Ramírez, L.G. Navarro and J.C. Acevedo, Colombian Journal of Chemistry, (Rev. Colomb. Quim.) 39, 321 (2010).

R. Gaggino, Construction and Building Materials 35, 468 (2012). https://dx.doi.org/10.1016/j.conbuildmat.2012.04.125

Y. Shosuke, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura and K. Oda, Science 351, 1196 (2016). https://doi.org/10.1126/science.aad6359

J.D. Barcenas-Torres, C. Garibay-Orijel, H. Macarie, J. Garcia-Mena, H.M. Poggi-Varaldo, Biological treatment system applied to the degradation of chlorinated compounds : review of advances and perspectives, edited by I. Sastre Conde, H. Macarie, G. Lopez, A.M. Ibanez Burgos, C. Garau, J. Maria Luna, J. March, A. Martorell, M. Colombas, J. Vadell, J. Vera, J.L. Sanz and M. Moreno, The third international meeting on environmental biotechnology and engineering. Palma de Mallorca : Govern de les Illes Balears, 213. IMEBE. International Meeting on Environmental Biotechnology and Engineering, 3., Palma de Mallorca (ESP), 2008/09/21-25, (2009).

C. Sammon, J. Yarwood and N. Everall, Polymer Degradation and Stability 67, 149 (2000). https://doi.org/10.1016/S0141-3910(99)00104-4

D.P.R. Kint, A. Martínez de Harduya and S. Muñoz-Guerra., Polymer Degradation and Stability 79, 353 (2003). https://doi.org/10.1016/S0141-3910(02)00299-9

D. Paszun and T. Spychaj, Industrial & Engineering Chemistry Research 36, 1373 (1997). https://doi.org/10.1021/ie960563c

G. Güçlü, T. Yalçınyuva, S. Özgümü and M. Orbay, Thermochimica Acta 404, 193 (2003). https://doi.org/10.1016/S0040-6031(03)00160-6

F. Fanelli and J. Benedikt, Plasma Processes and Polymers 9, 1040 (2012). https://doi.org/10.1002/ppap.201200138

H.L. Chen, H.M. Lee, S.H. Chen, Y. Chao and M.B. Chang, Applied Catalysis B: Environmental 85, 1 (2008). https://doi.org/10.1016/j.apcatb.2008.06.021

J.V. Durme, J. Dewulf, C. Leys and H.V. Langenhove, Applied Catalysis B: Environmental 78, 324 (2008). https://doi.org/10.1016/j.apcatb.2007.09.035

J.C. Whitehead, Pure and Applied Chemistry 82, 1329 (2010). https://doi.org/10.1351/PAC-CON-10-02-39

S.M. Starikovskaia, Journal of Physics D: Applied Physics 39, R265 (2006). https://doi.org/10.1088/0022-3727/39/16/R01

I.V. Adamovich, I. Choi, N. Jiang, J.-H. Kim, S. Keshav, W.R. Lempert, E. Mintusov, M. Nishihara, M. Samimy and M. Uddi, Plasma Sources Science and Technology 18, 034018 (2009). http://dx.doi.org/10.1088/0963-0252/18/3/034018

A. Starikovskiy and N. Aleksandrov, Progress in Energy and Combustion Science 39, 61 (2013). https://doi.org/10.1016/j.pecs.2012.05.003

M. Laroussi and A. Fridman, Plasma 7, 185 (2010). https://doi.org/10.1002/ppap.201000007

G.Y. Park, S.J. Park, M.Y. Choi, I.G. Koo, J.H. Byun, J.W. Hong, J.Y. Sim, G.J. Collins and J.K. Lee, Plasma Sources Science and Technology 21, 043001 (2012). https://dx.doi.org/10.1088/0963-0252/21/4/043001

D.B. Graves, Journal of Physics D: Applied Physics 45, 263001 (2012). http://dx.doi.org/10.1088/0022-3727/45/26/263001

E.E. Kunhardt, IEEE Transactions on Plasma Science 28, 189 (2000). https://doi.org/10.1109/27.842901

C.O. Laux, T.G. Spence, C.H. Kruger and R.N. Zare, Plasma Sources Science and Technology 12, 125 (2003). https://doi.org/10.1088/0963-0252/12/2/301

Downloads

Published

2021-02-10

How to Cite

(1)
Flores, O.; Campillo, B.; Castillo, F. .; Martínez, H.; Colín, J. . Surface Modification of Polyethylene Terephthalate (PET) by Corona Discharge Plasma. J. Nucl. Phy. Mat. Sci. Rad. A. 2021, 8, 129-134.

Issue

Section

Articles