Effect of Oriented Nuclei on the Competing Modes of α and One-Proton Radioactivities in the Vicinity of Z = 82 Shell Closure

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91006

Keywords:

Preformed Cluster Decay Model, Proton radioactivity, Quantum Mechanical Fragmentation Theory

Abstract

The purpose of the present work is to investigate the alpha (α) emission as competing mode of one proton emission using the preformed cluster decay model (PCM). PCM is based on the quantummechanical tunneling mechanism of penetration of the preformed fragments through a potential barrier, calculated within WKB approximation. To explore the competing aspects of α and one proton radioactivity, we have chosen emitters present immediately above and below the Z = 82 shell closure i.e. 177Tl and 185Bi by taking into account the effects of deformations (β2) and orientations of outgoing nuclei. The minimized values of fragmentation potential and maximized values of preformation probability (P0) for proton and alpha fragment demonstrated the crucial role played by even Z - even N daughter and shell closure effect of Z = 82 daughter, in 177Tl and 185Bi, respectively. The higher values of P0 of the one proton further reveal significance of nuclear structure in the proton radioactivity. From the comparison of proton and α decay, we see that the former is heavily dominating with larger values of P0 in comparison to the later. Theoretically calculated half-lives of one proton and α emission for spherical and deformed considerations have also been compared with available experimental data.

Downloads

Download data is not yet available.

References

V.I. Goldansky, Nuclear Physics 19, 482 (1960). https://doi.org/10.1016/0029-5582(60)90258-3

K. P. Jackson et al., Phys. Lett. B 33, 281 (1970). https://doi.org/10.1016/0370-2693(70)90269-8

J. Cerny, J.E. Esterl, R.A. Gough and R.G. Sextro, Phys. Lett. B 33, 284 (1970). https://doi.org/10.1016/0370-2693(70)90270-4

D. Ni and Z. Ren, Rom. Journ. Phys. 57, 407 (2012).

B. Buck, A. C. Merchant and S. M. Perez, Phys. Rev. C 45, 1688 (1992). https://doi.org/10.1103/PhysRevC.45.1688

S. Aberg, P. B. Semmes and W. Nazarewicz, Phys. Rev. C 56, 1762 (1997). https://doi.org/10.1103/PhysRevC.56.1762

M. Balasubramaniam and N. Arunachalam, Phys. Rev. C 71, 014603 (2005). https://doi.org/10.1103/PhysRevC.71.014603

J. M. Dong, H. F. Zhang and G. Royer, Phys. Rev. C 79, 054330 (2009). https://doi.org/10.1103/PhysRevC.79.054330

A. Zdeb, M.Warda, C.M. Petrache and K. Pomorski, Eur. Phys. J. A 52, 323 (2016). https://doi.org/10.1140/epja/i2016-16323-7

C. N. Davids et al., Phys. Rev. C 55, 2255 (1997). https://doi.org/10.1103/PhysRevC.55.2255

M. Kaur, S. Kaur, B. B. Singh and R. K. Gupta, Proceedings of the DAE Symp. on Nucl. Phys. 63, 554 (2018).

S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989). https://doi.org/10.1103/PhysRevC.39.1992

S. K. Arun, R. K. Gupta, S. Kanwar, B. B. Singh and M. K. Sharma, Phys. Rev. C 79, 064616 (2009). https://doi.org/10.1103/PhysRevC.79.064616

G. Sawhney, M. K. Sharma and R. K. Gupta, Phys. Rev. C 83, 064610 (2011). https://doi.org/10.1103/PhysRevC.83.064610

R. Kumar and M. K. Sharma, Phys. Rev. C 85, 069904 (2012). https://doi.org/10.1103/PhysRevC.85.069904

G. L. Poli et al., Phys. Rev. C 59, R2979 (1999). https://doi.org/10.1103/PhysRevC.59.R2979

A. A. Sonzogni, Nuclear Data Sheets 95, 1 (2002). https://doi.org/10.1006/ndsh.2002.0001

Downloads

Published

2021-08-31

Issue

Section

Articles