Effect of the Width of Gaussian Wave Packets on the Stability of the Nuclei

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91002

Keywords:

Quantum Molecular Dynamics Model, Stability of nucleus, Gaussian Width

Abstract

The role of the range of interaction on the stability of the nuclei propagating with and without momentum dependent interactions is analyzed within the framework of Quantum Molecular Dynamics (QMD) model. A detailed study is carried out by taking different equations of state (i.e., static soft and hard and the momentum dependent soft and hard) for the selected nuclei from 12C to 197Au. Comparison is done by using the standard and the double width of the Gaussian wave packets. We find that the effect of the double width of the Gaussian wave packets on the stability of the initial stage nuclei cannot be neglected. The nuclei having double width do not emit free nucleons for a long period of time. Also, the ground state properties of all the nuclei are described well. In the low mass region, the obtained nuclei are less bound but stable. Heavy mass nuclei have proper binding energy and are stable.

Downloads

Download data is not yet available.

References

J. Aichelin, A. Rosenhauer, G. Peilert, H. Stocker and W. Greiner, Phys. Rev. Lett. 58, 1926 (1987). https://doi.org/10.1103/PhysRevLett.58.1926

C. Gale, G. Bertsch and S. Das Gupta, Phys. Rev. C 35, 1666 (1987). https://doi.org/10.1103/PhysRevC.35.1666

A. R. Bodmer and C. N. Panos, Phys. Rev. C 15, 1342 (1977). https://doi.org/10.1103/PhysRevC.15.1342

A. R. Bodmer, C. N. Panos and A. D. MacKellar, Phys. Rev. C 22, 1025 (1980). https://doi.org/10.1103/PhysRevC.22.1025

A. R. Bodmer and C. N. Panos,Nucl. Phys. A 356, 517 (1981). https://doi.org/10.1016/0375-9474(81)90204-9

A. R. Bodmer, C. Panos and A. D. MacKellar, Phys. Rev. C 22, 1025 (1980). https://doi.org/10.1103/PhysRevC.22.1025

C. Gale et al., Phys. Rev. C 41, 1045 (1990).

J. Jaenicke et al., Nucl. Phys. A 536, 201 (1992). https://doi.org/10.1016/0375-9474(92)90254-H

D.T. Khoa et al., Nucl. Phys. A 548, 102 (1992). https://doi.org/10.1016/0375-9474(92)90079-Y

E. D. Cooper et al., Phys. Rev. C 36, 2170 (1987). https://doi.org/10.1103/PhysRevC.36.2170

L. Wilets, Y. Yariv and R Chestnut, Nucl. Phys. A 301, 359 (1978). https://doi.org/10.1016/0375-9474(78)90268-3

R.Y. Cusson et al., Phys. Rev. Lett. 55, 2786 (1985). https://doi.org/10.1103/PhysRevLett.55.2786

C. Hartnack et al., EPJ A 1, 151 (1998). https://doi.org/10.1007/s100500050045

P.B. Gossiaux and J. Aichelin, Phys. Rev. C 56, 2109 (1997). https://doi.org/10.1103/PhysRevC.56.2109

J. Aichelin and H. Stocker, Physics Letter B 176, 14 (1986). https://doi.org/10.1016/0370-2693(86)90916-0

A. Rosenhauer, J. Aichelin, H. Stocker and W. Greiner,

J. Phys. Colloques 47, 395 (1986). https://doi.org/10.1051/jphyscol:1986447

C. Gale et al., Phys. Rev. C 41, 1545 (1990). https://doi.org/10.1103/PhysRevC.41.1545

Y.K. Vermani, S. Goyal and R.K. Puri, Phys. Rev. C 79, 064613 (2009). https://doi.org/10.1103/PhysRevC.79.064613

D. Mancusi, K. Niita, T. Maruyama and L. Sihver, Phys. Rev. C 79, 014614 (2009). https://doi.org/10.1103/PhysRevC.79.014614

K. Niita et al., Phys. Rev. C 52, 2620 (1995). https://doi.org/10.1103/PhysRevC.52.2620

K. Abdel-Waged, Phys. Rev. C 71, 044607 (2005). https://doi.org/10.1103/PhysRevC.71.044607

L. De Paula et al., Physics Letters B 258, 251 (1991). https://doi.org/10.1126/science.251.4991.258-a

H. Horiuchi, Nucl. Phys. A 583, 297 (1995). https://doi.org/10.1016/0375-9474(94)00676-E

T. Maruyama, A. Ohnishi and H. Horiuchi, Phys. Rev. C 42, 386 (1990). https://doi.org/10.1103/PhysRevC.42.386

L. Wilet, E. M. Henley, M. Kraft and A. D. MacKella, Nucl. Phys. A 282, 341 (1977). https://doi.org/10.1016/0375-9474(77)90220-2

T. Maruyama, K. Niita, K. Oyamatsu, T. Maruyama, S. Chiba and A. Iwamoto, Phys. Rev. C 57, 655 (1998). https://doi.org/10.1103/PhysRevC.57.655

E. Lehmann, R. K. Puri, A. Faessler, G. Batko and S. W. Huang, Phys. Rev. C 51, 2113 (1995). https://doi.org/10.1103/PhysRevC.51.2113

J. Randrup, Nucl. Phys. A 495, 245 (1989). https://doi.org/10.1016/0375-9474(89)90323-0

L. Neise et al., Nucl. Phys. A 519, 375 (1990). https://doi.org/10.1016/0375-9474(90)90642-Y

S. Chikazumi et al., Phys. Rev. C 63, 024602 (2001). https://doi.org/10.1103/PhysRevC.63.024602

C. Hartnack et al., Nucl. Phys A 495, 303 (1989). https://doi.org/10.1016/0375-9474(89)90328-X

G. Peilert et al., Rep. Prog. Phys. 57, 533 (1994). https://doi.org/10.1088/0034-4885/57/6/001

T. Maruyama, K. Niita and A. Iwamoto, Phys. Rev. C 53, 297 (1996). https://doi.org/10.1103/PhysRevC.53.297

G. Peilert et al., Phys. Rev. C 46, 1457 (1992). https://doi.org/10.1103/PhysRevC.46.1457

D. H. Boal and J. N. Glosi, Phys. Rev. C 37, 91(1988). https://doi.org/10.1103/PhysRevC.37.91

D. H. Boal and J. N. Glosi, Phys. Rev. C 38, 2621 (1988). https://doi.org/10.1103/PhysRevC.38.2621

C. O. Dorso et al., Phys. Lett. B 188, 287 (1987). https://doi.org/10.1016/0370-2693(87)91382-7

Z. Li, C. Hartnack, H. Stocker and W. Greiner, Phys. Rev. C 44, 824 (1991). https://doi.org/10.1103/PhysRevC.44.824

G. Peilert et al., Phys. Rev. C 39, 1402 (1989). https://doi.org/10.1103/PhysRevC.39.1402

S. Gautam et al., J. Phys. G: Nucl. Part. Phys. 37, 085102 (2010). https://doi.org/10.1088/0954-3899/37/8/085102

D. Klakow et al., Phys. Rev. C 48, 1982 (1993). https://doi.org/10.1103/PhysRevC.48.1982

C. Hartnack et al., Nucl. Phys A 580, 643 (1994). https://doi.org/10.1016/0375-9474(94)90786-2

N. Wang, Z. Li and X. Wu, Phys. Rev. C 65, 064608 (2002). https://doi.org/10.1103/PhysRevC.65.064608

J. Singh and R. K. Puri, Phys. Rev. C 62, 054602 (2000). https://doi.org/10.1103/PhysRevC.62.054602

J. Konopka, Ph.D. thesis, Frankfurt University, 1955.

H. Feldmeier, Nucl. Phys. A 515, 147 (1990). https://doi.org/10.1016/0375-9474(90)90328-J

A. Ono et al., Prog. Theor. Phys. 87, 1185 (1992). https://doi.org/10.1143/ptp/87.5.1185

H. Feldmeier, Nucl. Phys. A 515, 147 (1990). https://doi.org/10.1016/0375-9474(90)90328-J

H. Feldmeier, K. Bieler, and J. Schnack, Nucl. Phys. A 586, 493 (1995). https://doi.org/10.1016/0375-9474(94)00792-L

E. Lehmann et al., Phys. Rev. C 51, 2113 (1995). https://doi.org/10.1103/PhysRevC.51.2113

I. Dutt and R. K. Puri, Phys. Rev. C 81, 044615 (2010). https://doi.org/10.1103/PhysRevC.81.064609

I. Dutt and R. K. Puri, Phys. Rev. C 81, 047601 (2010). https://doi.org/10.1103/PhysRevC.81.047601

I. Dutt and R. K. Puri, Phys. Rev. C 81, 064608 (2010). https://doi.org/10.1103/PhysRevC.81.064608

I. Dutt and R. K. Puri, Phys. Rev. C 81, 064609 (2010). https://doi.org/10.1103/PhysRevC.81.064609

J. Aichelin, Phys. Rep. 202, 233 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

S. Kumar and R. K. Puri, Phys. Rev. C 58, 2858 (1998). https://doi.org/10.1103/PhysRevC.58.2858

J. Singh and R. K. Puri, J. Phys. G: Nucl. Part. Phys. 27, 2091 (2001). https://doi.org/10.1088/0954-3899/27/10/310

S. Kumar and R. K. Puri, Phys. Rev. C 58, 320 (1998). https://doi.org/10.1103/PhysRevC.58.320

S. Kumar, R. K. Puri and J. Aichelin, Phys. Rev. C 58, 1618 (1998). https://doi.org/10.1103/PhysRevC.58.1618

P. B. Gossiaux, R. K. Puri, C. Hartnack and J. Aichelin, Nucl. Phys. A 619, 379 (1997). https://doi.org/10.1016/S0375-9474(97)00175-9

Downloads

Published

2021-08-31

Issue

Section

Articles