Texture One Zero Model Based on A4 Flavor Symmetry and its Implications to Neutrinoless Double Beta Decay

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91012

Keywords:

Inverse seesaw, Neutrinoless double beta decay, A4 flavor group, Texture one zero

Abstract

Neutrinos are perhaps the most elusive particles in our Universe. Neutrino physics could be counted as a benchmark for various new theories in elementary particle physics and also for the better understanding of the evolution of the Universe. To complete the neutrino picture, the missing information whether it is about their mass or their nature that the neutrinos are Majorana particles could be provided by the observation of a process called neutrinoless double beta (0νββ) decay. Neutrinoless double beta decay is a hypothesised nuclear process in which two neutrons simultaneously decay into protons with no neutrino emission. In this paper we proposed a neutrino mass model based on A4 symmetry group and studied its implications to 0νββ decay. We obtained a lower limit on |Mee| for inverted hierarchy and which can be probed in 0νββ experiments like SuperNEMO and KamLAND-Zen. 

Downloads

Download data is not yet available.

References

R. N. Mohapatra, Phys. Rev. Lett. 56, 561 (1986). https://doi.org/10.1103/PhysRevLett.56.561

M. C. Gonzalez-Garcia and J. W. Walle, Phys. Lett. B 216, 360 (1989). https://doi.org/10.1016/0370-2693(89)91131-3

F. Deppisch and J. W. F. Walle, Phys. Rev. D 72, 036001 (2005). https://doi.org/10.1103/PhysRevD.72.036001

M. Magg and C. Wetterich, Phys. Lett. B 94 , 61 (1980). https://doi.org/10.1016/0370-2693(80)90825-4

H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1 (2010). https://doi.org/10.1143/PTPS.183.1

P. H. Frampton, S. L. Glashow and D. Marfatia, Phys. Lett. B 536, 79 (2002). https://doi.org/10.1016/S0370-693(02)01817-8

Z. -Z. Xing, Phys. Lett. B 530, 159 (2002). https://doi.org/10.1016/S0370-2693(02)01354-0

W. Guo and Z. -Z. Xing, Phys. Rev. D 67, 053002 (2003). https://doi.org/10.1103/PhysRevD.67.053002

S. Dev and S. Kumar, Mod. Phys. Lett. A 22, 1401 (2007). https://doi.org/10.1142/S0217732307021767

S. Dev, S. Kumar, S. Verma and S. Gupta, Phys. Rev. D 76, 013002 (2007). https://doi.org/10.1103/PhysRevD.76.013002

S. Dev, S. Verma, S. Gupta and R. R. Gautam, Phys. Rev. D 81, 053010 (2010). https://doi.org/10.1103/PhysRevD.81.053010

S. Verma, Adv. High Energy Phys. 2015, 385968 (2015). https://doi.org/10.1155/2015/385968

S. Dev, S. Kumar and S. Verma, Mod. Phys. Lett. A 24, 2251 (2009). https://doi.org/10.1142/S0217732309030680

S. Verma, M. Kashav and S. Bhardwaj, Nucl. Phys. B 946, 114704 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114704

S. Verma and M. Kashav, Mod. Phys. Lett. A 35, 2050165 (2020). https://doi.org/10.1142/S0217732320501655

A. S. Barabash, J. Phys. Conf. Ser. 375, 042012 (2012). https://doi.org/10.1088/1742-6596/375/1/042012

F. Granena et al., arXiv:0907.4054[hep-ex].

J. J. Gomez-Cadenas et al., Adv. High Energy Phys. 2014, 907067 (2014). https://doi.org/10.1155/2014/907067

A. Gando et al., Phys. Rev. Lett. 117, 082503 (2016). https://doi.org/10.1103/PhysRevLett.117.082503

C. Licciardi, J. Phys. Conf. Ser. 888, 012237 (2017). https://doi.org/10.1088/1742-6596/888/1/012237

I. Esteban, M. Gonzalez-Garcia, M. Maltoni, et al. J. High Energ. Phys. 2020, 178 (2020). https://doi.org/10.1007/JHEP09(2020)178.

Downloads

Published

2021-08-31

Issue

Section

Articles