Binary and Ternary Fragmentation Analysis of 252Cf Nucleus using Different Nuclear Radii

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91010

Keywords:

Ternary fission, Fragmentation potential, Spontaneous fission

Abstract

Pioneering study reveals that a radioactive nucleus may split into two or three fragments and the phenomena are known as binary fission and ternary fission respectively. In order to understand the nuclear stability and related structure aspects, it is of huge interest to explore the fragmentation behavior of a radioactive nucleus in binary and ternary decay modes. In view of this, Binary and ternary fission analysis of 252Cf nucleus is carried out using quantum mechanical fragmentation theory (QMFT). The nuclear potential and Coulomb potential are estimated using different versions of radius vector. The fragmentation structure is found to be independent to the choice of fragment radius for binary as well
as ternary decay paths. The deformation effect is included up to quadrupole (β2) with optimum cold orientations and their influence is explored within binary splitting mode. Moreover, the most probable fission channels explore the role of magic shell effects in binary and ternary fission modes. 

Downloads

Download data is not yet available.

References

N. Sharma, A. Kaur and M. K. Sharma, Phys. Rev. C 102, 064603 (2020). https://doi.org/10.1103/PhysRevC.102.064603

G. Farwell, E. Segrè and C. Wiegand, Phys. Rev. 71, 327 (1947). https://doi.org/10.1103/PhysRev.71.327

A. V. Ramayya et al., Phys. Rev. Lett. 81, 947 (1998). https://doi.org/10.1103/PhysRevLett.81.947

K. Manimaran and M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009). https://doi.org/10.1103/PhysRevC.79.024610

K. R. Vijayraghvan, M. Balasubramaniam and W. von Oertzen, Phys. Rev. C 91, 044616 (2015). https://doi.org/10.1103/PhysRevC.91.044616

V. I. Zagrebaev, A .V. Karpov and Walter Griener, Phys. Rev. C 81, 044608 (2010). https://doi.org/10.1103/PhysRevC.81.044608

R. B. Tashkodjaev et al., Phys. Rev. C 91, 054612 (2015). https://doi.org/10.1103/PhysRevC.91.054612

K. Manimaran and M. Balasubramaniam, Phys. Rev C 83, 034609 (2011). https://doi.org/10.1103/PhysRevC.83.034609

A. V. Ramayya et al., Phys. Rev. C 57, 2370 (1998). https://doi.org/10.1103/PhysRevC.57.2370

Y. V. Pyaktov et al., Eur. Phys. J. A 45, 29 (2010). https://doi.org/10.1140/epja/i2010-10988-8

J. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974). https://doi.org/10.1103/PhysRevLett.32.548

R. K. Gupta, W. Scheid and W. Greiner, Phys. Rev. Lett. 35, 353 (1975). https://doi.org/10.1103/PhysRevLett.35.353

G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995). https://doi.org/10.1016/0375-9474(95)00445-9

P. Moller, J. R. Nix,W. D. Myers and W. J. Swiatecki, At. Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002

J. Blocki, J. Randrup, W. J. Swiatecki and C. F. Tsang, Annals of Physics 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4

W. Reisdorf, J. Phys. G.: Nucl. Part. Phys. 20, 1297 (1994). https://doi.org/10.1088/0954-3899/20/9/004

W. D. Myers and W. J. Swiatecko Phys. Rev. C 62, 044610 (2000). https://doi.org/10.1103/PhysRevC.62.044610

A. Winther, Nucl. Phys. A 594, 203 (1995). https://doi.org/10.1016/0375-9474(95)00374-A

R. K. Gupta et al., J. Phys. G. 31, 631 (2005). https://doi.org/10.1088/0954-3899/31/7/009

R. Kumar, Phys. Rev. C 86, 044612 (2012). https://doi.org/10.1103/PhysRevC.86.044612

Downloads

Published

2021-08-31

Issue

Section

Articles