Comparative Analysis of 13,14C Induced Reactions on 232Th Target

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91009

Keywords:

Isotopes, Fusion-fission, Compound nucleus, Dynamical Cluster Decay Model (DCM), Preformation probability

Abstract

We have investigated the pairing and magicity effect in context of a comparative study of 13,14C induced reactions on 232Th target at energies in the vicinity of Coulomb barrier. The fission distribution and related properties are explored in terms of the summed-up preformation probabilities. The barrierpenetrability is found to be higher for fragments emitted from 246Cm* formed in 14C+232Th reaction than those emitted in the fission of 245Cm*, leading to higher magnitude of cross-section for earlier case. The DCM calculated fusion-fission cross-sections using ΔR=0 fm are normalised to compare with the available experimental data. The calculations are done for spherical shape of fragments and it will be of further interest to explore the fission mass distribution after the inclusion of deformations.

Downloads

Download data is not yet available.

References

M. Kaur, B. B. Singh and M. K. Sharma, AIP Conference Proceedings 2532, 050031 (2021). https://doi.org/10.1063/5.0053354

R. K. Gupta, R. Kumar, N. K. Dhiman, M. Balasubrmaniam, W. Scheid and C. Beck, Phys. Rev. C 68, 014610 (2003). https://doi.org/10.1103/PhysRevC.68.039901

B. B. Singh, M. K. Sharma and R. K. Gupta, Phys. Rev. C. 77, 054613 (2008). https://doi.org/10.1103/PhysRevC.77.054613;

B. B. Singh, PhD Thesis, Thapar University, Patiala (2009).

D. Jain, R. Kumar, M. K. Sharma and R. K. Gupta, Phys. Rev. C. 85, 024615 (2012). https://doi.org/10.1103/PhysRevC.85.024615

B. B. Singh et al., Jour. of Phys. Conf. Proc. 569, 012030 (2014). https://doi.org/10.1088/1742-6596/569/1/012030

Jour. of Phys. Soc. Conf. Proc 6, 030001 (2014). https://doi.org/10.7566/JPSCP.6.030001

EPJ Web Conf. 86, 00048 (2015). https://doi.org/10.1051/epjconf/20158600048

EPJ Web Conf. 86, 00049 (2015). https://doi.org/10.1051/epjconf/20158600049

Applied Science Letters 02, 114 (2016). https://doi.org/10.1002/wea.2713

M. Kaur et al., Phys. Rev. C 92, 024623 (2015). https://doi.org/10.1103/PhysRevC.92.024623

Nucl. Phys. A 980, 67 (2018). https://doi.org/10.1016/j.nuclphysa.2018.09.079

Nucl. Phys. A 969, 14 (2018). https://doi.org/10.1016/j.nuclphysa.2017.09.014

AIP Conf. Proc. 2220, 130059 (2020). https://doi.org/10.1063/5.0005461

M. Kaur et al., Phys. Rev. C 95, 014611 (2017). https://doi.org/10.1103/PhysRevC.95.014611

AIP Conf. Proc. 1953, 140113 (2018). https://doi.org/10.1063/1.5033288

Phys. Rev. C 99, 014614 (2019). https://doi.org/10.1103/PhysRevC.99.014614

R. Kaur et al., Phys. Rev. C 98, 064612 (2018). https://doi.org/10.1103/PhysRevC.98.064612

Phys. Rev. C 101, 034614 (2020). https://doi.org/10.1103/PhysRevC.101.034614

Phys. Rev. C 101, 044605 (2020). https://doi.org/10.1103/PhysRevC.101.044605

AIP Conf. Proc. 2220, 130036 (2020). https://doi.org/10.1063/5.0001455

M. Kaur, S. Kaur and B. B. Singh, AIP Conf. Proc. 1953, 140098 (2018). https://doi.org/10.1063/1.5033273

M. Kaur, S. Kaur, B. B. Singh and M. K. Sharma, AIP Conf. Proc. 2220, 130059 (2020). https://doi.org/10.1063/5.0005461

J. C. Mein et al., Phys. Rev. C 55, R995(R) (1997). https://doi.org/10.1103/PhysRevC.55.R995

M. Alcorta, K. E. Rehm, B. B. Back et al., Phys. Rev. Lett. 106, 172701 (2011). https://doi.org/10.1103/PhysRevLett.106.172701

J. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974). https://doi.org/10.1103/PhysRevLett.32.548

R. K. Gupta, W. Scheid and W. Greiner, Phys. Rev. Lett. 35, 353 (1975). https://doi.org/10.1103/PhysRevLett.35.353

V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967). https://doi.org/10.1016/0375-9474(67)90510-6

N. J. Davidson, S. S. Hsiao, J. Markram, H. G. Miller and Y. Tzeng, Nucl. Phys. A 570, 61 (1994). https://doi.org/10.1016/0375-9474(94)90269-0

W. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966). https://doi.org/10.1016/0029-5582(66)90639-0

Downloads

Published

2021-08-31

Issue

Section

Articles