Study of the Production Cross-Sections of the Neutron-rich 184Ta and 186Ta

Authors

DOI:

https://doi.org/10.15415/jnp.2021.91005

Keywords:

Cross-section, 184Ta, 186Ta, (n, p) reactions, Reactor concrete, Radiation shielding, Neutron Transmission, Beam, Tritium beams

Abstract

Synthesizing nuclei through reactions that produce a reasonable yield is important for the experimental study of neutron-rich nuclei. In this study, the cross-section values of 184Ta and 186Ta nuclei in various experiments were reviewed and analysed. The experimental data of (n, p), (p, x) and (n, α) reactions were compared to identify the best reaction to produce these nuclei for further study. Our study shows that (n, p) reactions on natural Tungsten targets are the most feasible reactions with a good yield of the neutron-rich Tantalum isotopes. New reactions have been proposed for the effective synthesis of 184Ta and 186Ta using tritium beams on Hafnium targets. The cross-section values of the proposed reactions were calculated by PACE4 software simulations.

Downloads

Download data is not yet available.

References

Y. Song et al., Applied Radiation and Isotopes 98, 29 (2015). https://doi.org/10.1016/j.apradiso.2014.11.018

N. Jovančević et al., Eur. Phys. J. A 52, 148 (2016). https://doi.org/10.1140/epja/i2016-16148-4

S.M. Qaim and C. Graça, Nucl. Phys. A 242, 317 (1975). https://doi.org/10.1016/0375-9474(75)90052-4

X. Kong, S. Hu and J. Yang, Chin. Nucl. Sci. and Tech. Rep. Indc(Cpr)-042/L, 17, 9-11 (1997).

Evaluated Nuclear Structure Data Files (ENSDF). https://www.nndc.bnl.gov/ensdf/

Nuclear Science References (NSR). https://www.nndc.bnl.gov/nsr/

R. F. Coleman, B.E. Hawker, L.P. O’Connor and J.L. Perkin, Proc. Phys. Soc. 73, 215 (1959). https://doi.org/10.1088/0370-1328/73/2/308

X.J. Sun et al., Chin. Phys. Lett. 36, 112501 (2019). https://doi.org/10.1088/0256-307X/36/11/112501

M. Avrigeanu et al., Nucl. Phys. A 806, 15 (2008). https://doi.org/10.1016/j.nuclphysa.2008.03.010

A. Filantekov, EXFOR Data INDC(CCP)-0460, 4RUSRI, KhlopinRadium Inst., St. Petersburg, Russia, (2016).

A. A. Filatenkov and S. V. Chuvaev, EXFOR Data KRI-259, 4RUSRI, KhlopinRadium Inst., St.Petersburg, Russia, (2003).

A. A. Filatenkov et al., EXFOR Data (R, RI-252,199905), 4RUSRI, KhlopinRadium Inst., St. Petersburg, Russia, (1999).

S. Murahira et al., EXFOR Data S, INDC(JPN)-175 171, 199603 (1996); S, JAERI-C-96-008, 171, 199603 (2JPNNAG, Nagoya Univ., Nagoya, Japan; 2JPNOSA, Osaka Univ., Osaka, Japan)

S. K. Mukherjee and H. Bakhru, 1963 XFOR Data C, 63BOMBAY,244, 196302 (Conf: Nucl.and Solution. State Physics Symp., Bombay 1963, India)

Y. E. Titarenko et al., Physics of Atomic Nuclei 74, 551 (2011). https://doi.org/10.1134/S1063778811040181

Y. Q. Ju et al., J. Phys. G: Nucl. Part. Phys. 42, 125102 (2015). https://doi.org/10.1088/0954-3899/42/12/125102

V. V. Desai et al., Phys. Rev. C 99, 044604 (2019). https://doi.org/10.1103/PhysRevC.99.044604

R.H. Iyer and J.W. Cobble, Phys. Rev. 174, 1186 (1968). https://doi.org/10.1103/PhysRev.172.1186

F. I. Habbani and K. T. Osman, Appl. Rad. and Isot. 54, 283 (2001). https://doi.org/10.1016/S0969-8043(00)00275-X

V. Avrigeanu et al., Nuclear Physics A 765, 1 (2006). https://doi.org/10.1016/j.nuclphysa.2005.10.003

A. Gavron, Phys. Rev. C 21, 230 (1980). https://doi.org/10.1103/PhysRevC.21.230

Downloads

Published

2021-08-31

Issue

Section

Articles