Theoretical Investigation of α-decay Chains of Fm-isotopes
DOI:
https://doi.org/10.15415/jnp.2022.92020Keywords:
α-decay, relativistic mean-field, preformed cluster-decay model, preformation, half-livesAbstract
Background: The theoretical and experimental investigations of decay properties of heavy and superheavy nuclei are crucial to explore the nuclear structure and reaction dynamics.
Purpose: The aim of this study is to probe the α-decay properties of 243Fm and 245Fm isotopic chains using relativistic mean-field (RMF) approach within the framework of preformed cluster-decay model (PCM).
Methods: The RMF densities are folded with the relativistic R3Y NN potential to deduce the nuclear interaction potential between the α particle and daughter nucleus. The penetration probability is calculated within the WKB approximation.
Results: The α-decay half-lives of even-odd 243Fm and 245Fm isotopes and their daughter nuclei are obtained from the preformed cluster-decay model. These theoretically calculated half-lives are found to be in good agreement with the recent experimental measurements.
Conclusions: The novel result here is the applicability of the scaling factor within the PCM as a signature for shell/sub-shell closures in α-decay studies. As such, we have also demonstrated that N=137, 139 and Z=94 corresponding to 231,233Pu could be shell/sub-shell closures. The least T1/2 is found at 243,245Fm which indicate their individual stability and α-decay as their most probable decay mode.
Downloads
References
G. Gamow, Z. Phys. 51, 204 (1928); https://doi.org/10.1007/BF01343196.
U. Condon, R. W. Gurney, Nature 122, 439 (1928); https://doi.org/10.1038/122439a0.
H. J. Mang, Ann. Rev. Nucl. Sci. 14, 1 (1964); https://doi.org/10.1146/annurev.ns.14.120164.000245.
C. Qi, Rev. Phys. 1, 77 (2016); https://doi.org/10.1016/j.revip.2016.05.001.
H. B. Yang et al. Phys. Lett. B 777, 212 (2018); https://doi.org/10.1016/j.physletb.2017.12.017.
S. Mukherjee, N. L. Singh and J. Rama Rao, Pramana J. Phys. 49(1), 311 (1993); https://doi.org/10.1007/s12043-018-1527-z.
H. C. Manjunatha, K. N. Sridhar and N. Sowmya, Phys. Rev. C 98, 024308 (2018); https://doi.org/10.1103/PhysRevC.98.024308.
N. Maroufi, V. Dehghani and S. A. Alavi, Nucl. Phys. A 983, 77 (2019); doi:10.1016/j.nuclphysa.2018.12.023.
H. C. Manjunatha, G. R. Sridhara, N. Sowmya, P. S. D. Gupta, N. Manjunatha and H. B. Ramalingam, Indian J. Phys. (2021); https://doi.org/10.1007/s12648-021-02171-5.
W. J. Weber, R. C. Ewing and A. Meldrum, J. Nucl. Mater. 250, 14 (1997); https://doi.org/10.1016/S0022-3115(97)00271-7.
V. Yu. Denisov and H. Ikezoe Phys. Rev. C 72, 064613 (2005); https://doi.org/10.1103/PhysRevC.72.064613.
Y. He, X. Yu and H. F. Zhang, Chin. Phys. C 45, 014110 (2021); DOI:10.1088/1674-1137/abc684.
D. Ni. and Z. Ren. Phys. Rev. C 81, 064318 (2010); https://doi.org/10.1103/PhysRevC.81.064318.
D. Ni and Z. Ren, Nucl. Phys. A 893, 13 (2012); https://doi.org/10.1016/j.nuclphysa.2017.04.013.
R. Blendowske, T. Fliessbach and H. Walliser, Nucl. Phys. A 464, 75 (1987); https://doi.org/10.1016/0375-9474(87)90423-4.
S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989); https://doi.org/10.1103/PhysRevC.39.1992.
B. Buck and J. C. Johnston, A. C. Merchant, and S. M. Perez, Phys. Rev. C 53, 2841 (1996); https://doi.org/10.1103/PhysRevC.53.2841.
R. Kumar and M. K. Sharma, Phys. Rev. C 85, 054612 (2012); https://doi.org/10.1103/PhysRevC.85.054612.
R. Kumar, Phys. Rev. C 86, 044612 (2012); https://doi.org/10.1103/PhysRevC.86.044612.
Nuclear Structure Physics, edited by A. Shukla and S. K. Patra, (CRC Press, Boca Raton, 2020); ISBN: 9780367256104.
G. R. Satchler and W. G. Love, Phys. Reports 55, 183 (1979); https://doi.org/10.1016/0370-1573(79)90081-4.
M. Bhuyan, R. Kumar, S. Rana, D. Jain, S. K. Patra and B. V. Carlson, Phys. Rev. C 101, 044603 (2020); https:// doi.org/10.1103/PhysRevC.101.044603.
M. Bhuyan and R. Kumar, Phys. Rev. C 98, 054610 (2018); https:// doi.org/10.1103/PhysRevC.98.054610.
B. B. Singh, M. Bhuyan, S. K. Patra, and R. K. Gupta, J. Phys. G: Nucl. Part. Phys. 39, 025101 (2012); http://dx.doi.org/10.1088/0954-3899/39/6/069501.
B. B. Sahu, S. K. Singh, M. Bhuyan, S. K. Biswal, and S. K. Patra, Phys. Rev. C 84, 034614 (2014); https:// doi.org/10.1103/PhysRevC.89.034614.
J. Khuyagbaatar, et al., Phys. Rev. C 102, 044312 (2020); https: //doi.org/10.1103/PhysRevC.102.044312.
J. G. Deng, H. F. Zhang Phys. Rev. C 102, 044314 (2020); https:// doi.org/10.1103/PhysRevC.102.044314.
J. G. Deng, H. F. Zhang Chin. Phys. C 45, 024104 (2021); DOI:10.1088/1674-1137/abcc5a.
Relativistic Density Functional for Nuclear Structure, edited by J. Meng, Int. Rev. Nucl. Phys. (Word Scientific, Singapore, 2016), Vol. 10; https://doi.org/10.1142/9872.
G. A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A. V. Afanasjev and P. Ring, Phys. Lett. B 671, 36 (2009); https://doi.org/10.1016/j.physletb.2008.11.070.
P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996); https://doi.org/10.1016/0146-6410(96)00054-3.
Advances in Nuclear Physics, edited by J. W. Negele and Erich Vogt (Plenum Press, New York, 1986), B. D. Serot and J. D. Walecka, Vol16, p. 1; ISBN: 0306419971 9780306419973.
S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989); https:// doi.org/10.1103/PhysRevC.39.1992.
R. Kumar, K. Sandhu, M. K. Sharma, and R. K. Gupta,Phys. Rev. C 87, 054610 (2013); https://doi.org/10.1103/PhysRevC.87.054610.
Niyti, G. Sawhney, M. K. Sharma, and R. K. Gupta, Phys. Rev. C 91, 054606 (2015); https://doi.org/10.1103/PhysRevC.91.054606.
J. A. Pattnaik, T. M. Joshua, A. Kumar, M. Bhuyan, and S. K. Patra, arXiv preprint arXiv:2111.14113 (2021).
J. A. Pattnaik, M. Bhuyan, R. N. Panda and S. K. Patra, Phys. Scr. 96 125319 (2021); https://doi.org/10.1088/1402-4896/ac3a4.
A. Kumar, H. C. Das, M. Kaur, M. Bhuyan, S. K. Patra, Phys. Rev. C 103, 024305 (2021); https://doi.org/10.1103/PhysRevC.103.024305.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 T. M. Joshua, Shilpa Rana, Nishu Jain, M. Bhuyan, K. Anwar, Raj Kumar, N. Abdullah

This work is licensed under a Creative Commons Attribution 4.0 International License.
View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode
View Licence Deed here https://creativecommons.org/licenses/by/4.0/
![]() |
Journal of Nuclear Physics, Material Sciences, Radiation and Applications by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at https://jnp.chitkara.edu.in/ |