Application of R-Matrix and Lagrange-Mesh Methods to Nuclear Transfer Reactions

Authors

  • Shubhchintak . Physique Nucléaire Théorique et Physique Mathématique, C. P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium
  • Pierre Descouvemont Physique Nucléaire Théorique et Physique Mathématique, C. P. 229, Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium

DOI:

https://doi.org/10.15415/jnp.2022.92029

Keywords:

Nuclear reactions, Nuclear transfer reactions, ADWA, R-matrix, Lagrange-mesh

Abstract

Background: Nuclear transfer reactions are a useful tool to study the structure of a nucleus. For reactions involving weekly bound nuclei, breakup effects can play significant role and theoretical calculations can be computational expensive in such cases.

Purpose: To utilize the Lagrange-mesh and R-matrix methods for nuclear transfer reactions.

Methods: We use the adiabatic distorted wave approximation (ADWA) method which can approximately treats the breakup effects in a simpler manner. In our approach, we apply the R-matrix method combining it with the Lagrange-mesh method, which is known to provide the fast and accurate computations.

Results: As a test case, we calculate the angular distribution of the cross sections for the 54Fe(d,p)55Fe reaction, where deuteron breakup effects play important role.

Conclusions: We show that these methods work well in the ADWA framework, and we look forward to applying these methods in coupled channel calculations.

Downloads

Download data is not yet available.

References

G. R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983).

N. Glendenning, Direct Nuclear Reactions (World Scientific, Singapore, 2004)

D. W. Bardayan, J. Phy. G: Nucl. Part. Phys. 43, 043001 (2016). https://doi.org/10.1088/0954-3899/43/4/043001

P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010). https://doi.org/10.1088/0034-4885/73/3/036301

D. Baye, Phys. Rep. 565, 1 (2015). https://doi.org/10.1016/j.physrep.2014.11.006

Shubhchintak, P. Descouvemont, Phys. Rev. C 100, 034611 (2019). https://doi.org/10.1103/PhysRevC.100.034611

Shubhchintak, Eur. Phys. J A 57, 32 (2021). https://doi.org/10.1140/epja/s10050-021-00344-8

K. T. Schmitt et al., Phys. Rev C 88, 064612 (2013). https://doi.org/10.1103/PhysRevC.88.064612

D. Walter et al., Phys. Rev C 99, 054625 (2019). https://doi.org/10.1103/PhysRevC.99.054625

N. B. Nguyen, F. M. Nunes and R. C. Johnson, Phys. Rev. C 82, 014611 (2010). https://doi.org/10.1103/PhysRevC.82.014611

R. C. Johnson and P. J. R. Soper, Phys. Rev. C 1, 976 (1970). https://doi.org/10.1103/PhysRevC.1.976

R. C. Johnson and P. C. Tandy, Nucl. Phys. A 235, 56 (1974). https://doi.org/10.1088/0034-4885/40/8/002

N. K. Timofeyuk and R. C. Johnson, Prog. Part. Nucl. Phys. 111, 103738 (2020). https://doi.org/10.1016/j.ppnp.2019.103738

L. Laid, J. A. Tostevin and R. C. Johnson, Phys. Rev. C 48, 1307 (1993). https://doi.org/10.1103/PhysRevC.48.1307

C. Bloch, Nucl. Phys. 4, 503 (1957). https://doi.org/10.1016/0029-5582(87)90058-7

A. J. Koning, J. P. Delaroche, Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

Y. L. Yntema and H. Ohnuma, Phys. Rev. Lett. 19, 1341 (1967). https://doi.org/10.1103/PhysRevLett.19.1341

J. D. Harvey and R. C. Johnson, Phys. Rev. C, 3, 636 (1971). https://doi.org/10.1103/PhysRevC.3.636

Downloads

Published

2022-06-20

How to Cite

(1)
., S.; Descouvemont, P. Application of R-Matrix and Lagrange-Mesh Methods to Nuclear Transfer Reactions. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 197-201.

Issue

Section

Conf_Articles