Low Energy S-Wave Proton-Deuteron Scattering Phase-Shifts using Morse Potential
DOI:
https://doi.org/10.15415/jnp.2022.92033Keywords:
Proton-Deuteron (p-D) scattering, Phase function menthod (PFM, RK-5 method, partial scattering cross-sectionAbstract
Background: Study of nucleon-nucleus interaction is important to understand the stability
of nuclei. At small lab energies ≈ 1-10 MeV, the three body 3He system can be considered as
a combination of proton and deuteron two body system. The two body system can be modeled by a local central potential along with Coulomb potential to obtain phase-shifts.
Purpose: Molecular Morse potential has been successfully able to calculate scattering phase
shifts of neutron-Deuteron (3He). The main objective of this paper is to test if Morse potential proves to be a good interaction potential to study proton-Deuteron (3He) scattering as well.
Methods: The phase function method is solved numerically using RK-5 method for determining the S-wave scattering phase shifts (SPS) for proton-deuteron (p-D) scattering as a
function of proton laboratory energy ranging from 1-10.4 MeV. The model paramters of Morse potential have been varied to obtain best mean absolute percentage error (MAPE) w.r.t. experimental data.
Results: The calculated SPS are found to have MAPE less than 3 percent w.r.t experimental phase shifts. Partial scattering cross-section has been determined using the obtained SPS.
Conclusions: Morse potential has been found to be successful in explaining interaction
between proton and deuteron.
Downloads
References
S. Awasthi, A. Khachi, L. Kumar and O.S.K.S Sastri, J. Nucl. Phys. Mat. Sci. Rad. A 9, 81
(2021). https://doi.org/10.15415/jnp.2021.91014
Arvieux, J. Nuclear Physics A 221, no. 2 ,253-268 (1974). https://doi.org/10.1016/0375-9474(74)90317-0
Wu, Y., S. Ishikawa, and T. Sasakawa. Few-Body Systems 15, no. 4, 145-188 (1993).
https://doi.org/10.1007/BF01076246
Aaron, R., and R. D. Amado. Physical Review 150, no. 3 , 857 (1966).
https://doi.org/10.1103/PhysRev.150.857
Mitra, A. N. Nuclear Physics 32, 529-542 (1962). https://doi.org/10.1016/0029-5582(62)90359-0
Chen, C. R., G. L. Payne, James Lewis Friar, and Benjamin F. Gibson. Physical Review C 39,
no. 4, 1261 (1989). https://doi.org/10.1103/PhysRevC.39.1261
Huttel, E., W. Arnold, H. Baumgart, H. Berg, and G. Clausnitzer. Nuclear Physics A 406, no.
, 443-455 (1983). https://doi.org/10.1016/0375-9474(83)90369-X
Clews, C. J., and N. Berovic. Physics Letters B 33, no. 5, 347-348 (1970).
https://doi.org/10.1016/0370-2693(70)90250-9
Kievsky, A., James Lewis Friar, G. L. Payne, S. Rosati, and M. Viviani. Physical Review C 63,
no. 6, 064004 (2001). https://doi.org/10.1103/PhysRevC.63.064004
Black, Timothy C., H. J. Karwowski, E. J. Ludwig, A. Kievsky, Sergio Rosati, and M. Viviani.
Physics Letters B 471, no. 2-3, 103-107 (1999). https://doi.org/10.1016/S0370-2693(99)01366-0
Ishikawa, Souichi. Few-Body Systems 32, no. 4, 229-248 (2003).
https://doi.org/10.1007/s00601-003-0001-7
Kim, C. C., S. M. Bunch, D. W. Devins, and H. H. Forster. Physics Letters 22, no. 3, 314-315
(1966). https://doi.org/10.1016/0031-9163(66)90629-9
Schmelzbach, P. A., W. Gr¨uebler, R. E. White, V. K¨onig, R. Risler, and P. Marmier. Nuclear
Physics A 197, no. 1, 273-289 (1972).(https://doi.org/10.1016/0375-9474(72)90762-2)
Christian, R. S., and J. L. Gammel. Physical Review 91, no. 1, 100 (1953).
https://doi.org/10.1103/PhysRev.91.100
Tornow, W., and H. Wita la. Nuclear Physics A 631, 701-705 (1998).
https://doi.org/10.1016/S0375-9474(98)00095-5
Deltuva, A., A. C. Fonseca, A. Kievsky, S. Rosati, P. U. Sauer, and M. Viviani. Physical Review
C 71, no. 6, 064003 (2005). https://doi.org/10.1103/PhysRevC.71.064003
Huttel, E., W. Arnold, H. Berg, H. H. Krause, J. Ulbricht, and G. Clausnitzer. Nuclear Physics
A 406, no. 3 , 435-442 (1983). https://doi.org/10.1016/0375-9474(83)90368-8
Casella, C., H. Costantini, A. Lemut, B. Limata, R. Bonetti, C. Broggini, L. Campajola et al.
Nuclear Physics A 706, no. 1-2, 203-216 (2002). https://doi.org/10.1016/S0375-9474(02)00749-2
R. A. Malfliet and J. A. Tjon, Nucl. Phys. A 127, 161 (1969). https://doi.org/10.1016/0375-9474(69)90775-1
B. Khirali, A. K. Behera, J. Bhoi and U. Laha, Ann. Phys. (N. Y) 41, 168044 (2020).
https://doi.org/10.1016/j.aop.2019.168044
Bhoi, J., A. K. Behera, and U. Laha. Journal of Mathematical Physics 60, no. 8 : 083502 (2019). https://doi.org/10.1063/1.5093115
J. Bhoi and U. Laha, Brazilian J. Phys. 46, 129 (2016). DOI 10.1007/s13538-015-0388-x
A. Khachi, L. Kumar and O.S.K.S Sastri, J. Nucl. Phys. Mat. Sci. Rad. A 9, 87 (2021).
https://doi.org/10.15415/jnp.2021.91015
Eyre, D., A. C. Phillips, and Frances Roig. Nuclear Physics A 275, no. 1, 13-28 (1977).
https://doi.org/10.1016/0375-9474(77)90271-8
P.M. Morse, Phys. Rev. (1929). https://doi.org/10.1103/PhysRev.34.57
S. Ali and A.R. Bodmer, Nuclear Physics 80, 99 (1966). https://doi.org/10.1016/0029-5582(66)90829-7
Morton, Donald C., Qixue Wu, and Gordon WF Drake. Physical Review A 73, no. 3, 034502
(2006). https://doi.org/10.1103/PhysRevA.73.034502
F. Calogero, American Journal of Physics 36, 566 (1968). https://doi.org/10.11191.1975005
V. V. Babikov, SOV PHYS USPEKHI 10 , 2 71 (1967).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Shikha Awasthi, Prof Dr., Anil Khachi

This work is licensed under a Creative Commons Attribution 4.0 International License.
View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode
View Licence Deed here https://creativecommons.org/licenses/by/4.0/
![]() |
Journal of Nuclear Physics, Material Sciences, Radiation and Applications by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at https://jnp.chitkara.edu.in/ |