Revisiting Macro-microscopic Mass Formula using Atomic Mass Evaluation-2020 Data


  • Swapna . CUHP
  • Prof. O.SK.S.Sastri



Liquid drop Model, Binding energy, Mass Formula, Shell energy, Pairing energy


Background: The macro-microscopic model has been succesful in nuclear mass predictions
and in obtaining various other properties of nuclear and nucleon matter. The present status
of generalised liquid drop model (GLDM) has been based on atomic mass evaluation (AME)-
2003 data.
Purpose: In this work, the co-efficients of most efficient mass formulae from Royer,
have been re-optimised for 2451 selected nuclei from AME-2020 data.
Methods: The root mean squared deviation (RMS) is minimized to optimize seven model
parameters that correspond to various terms in the nuclear binding energy that come in
powers of mass number A and square of relative neutron excess I = N −Z/A .
Results: The RMS between the theoretical and experimental binding energies has been
obtained as 0.65 using both the formulae.
Conclusions: The best possible formula for nuclear binding energy has been obtained using
AME-2020 data and it needs to be seen how this would effect the various nuclear properties
and predictions.


Download data is not yet available.


H. A. Bethe and R. F. Bacher. Nucl. Phys. A, 82, 8(2), (1936).

S. Gora, O. S. K. S. Sastri and S. K. Soni. European Journal of Physics, 43(3): 035802,


R. Guy and C. Gautier. Physical Review C, 73, no. 6: 067302, (2006).

M. Peter, J. R. Nix, W. D. Myers and W. J. Swiatecki. At. Data Nucl. Data Tables, 59, 185,


R. Guy, M. Guilbaud and A. Onillon. Nucl. Phys. A, 847, 24-41, (2010).

G. Royer. Nucl. Phys. A, 807, 105-118, (2008).

B. Matthias, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky and C. Y. Wong.

Reviews of Modern Phys., 44, no. 2 : 320, (1972).

J. Blocki , J. Randrup, W. J. Swiatecki and C. F. Tsang. Annals Phys., 105, 427-462, (1977).

G. S. Qing, X. J. Bao, J. Q. Li, and H. F. Zhang. Communications in Theoretical Physics,

viii 61, no. 5: 629, (2014).

F. A. Ivanyuk and K. Pomorski. Phys. Rev. C, 79, 054327, (2009).

G. Royer. In 4th International Conference: Current Problems in Nuclear Physics and Atomic Energy, pp. 62-69, (2012).

W. D. Myers and W. J. Swiatecki. Nucl. Phys. A, 601, 141-167, (1996).

A. Georges, A. H. Wapstra, and C. Thibault. Nucl. Phys. A, 729, 337-676, (2003).

I. Angeli. Atomic data and nuclear data tables, 87, 185-206, (2004).

W. D. Myers, Droplet model of atomic nuclei (Lawrence Berkeley National Laboratory, 1977).

M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi. Chinese Physics C, 45, 030003,

(2021) .

W. D. Myers and W. J. Swiatecki. Table of nuclear masses according to the 1994 Thomas-

Fermi model, (1994).

V. M. Strutinsky. Nucl. Phys. A, 95, 420-442, (1967).




How to Cite

., S.; Sastri, O. Revisiting Macro-Microscopic Mass Formula Using Atomic Mass Evaluation-2020 Data. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 193-196.