3He-α Elastic Scattering Phase Shifts in Various Channels Using Phase Function Method with Morse Potential

Authors

  • Anil Khachi Department of Physics and Astronomical Science School of Physical and Material Sciences TAB Shahpur Kangra (H.P) -176206
  • lalit Kumar Department of Physics and Astronomical Science School of Physical and Material Sciences TAB Shahpur Kangra (H.P) -176206
  • O.S.K.S. Sastri Department of Physics and Astronomical Science School of Physical and Material Sciences TAB Shahpur Kangra (H.P) -176206

DOI:

https://doi.org/10.15415/jnp.2022.92024

Keywords:

3He-α scattering, Phase Function Method (PFM), Morse potential, cross section

Abstract

Background: Typically 3He-α reaction has been modeled using Gaussian and Hulthen potentials without incorporating the non-local spin-orbit interaction.
Purpose: To obtain the scattering phase shifts (SPS) for α-3He radiative capture reaction for partial waves with total angular momentum J = 1/2, 3/2, 5/2, 7/2 having negative parities and J = 1/2 with positive parity, using Morse potential as the model of interaction along with the associated spin-orbit term.
Methods: Phase function method is employed for determining phase shifts in an iterative fashion, by making changes to model parameters, to ensure minimisation of mean absolute percentage error (MAPE) w.r.t. the experimental SPS.
Results: SPS have been obtained for 1/2+, 1/2-, 3/2-, 5/2- and 7/2- with MAPE values of 3.2, 1.0, 0.8, 17.6 and 6.5 respectively. The corresponding interaction potentials and partial cross-sections have been plotted. The resonance frequencies for the 5/2- and 7/2- scattering states are closely matching with experimental ones.
Conclusions: The interaction potentials for different ℓ-channels of 7Be have been constructed by considering Morse potential and spin-orbit terms by considering experimental scattering phase shifts for 3He-alpha reaction.

Downloads

Download data is not yet available.

References

E. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011).

https://doi.org/10.1103/RevModPhys.83.195

P. D. Serpico et al. JCAP 12, 10 (2004).

https://doi.org/10.1088/1475-7516/2004/12/010

D. M. Hardy, R.J. Spiger and S.D. Baker, Nucl. Phys. A 195, 241 (1972).

https://doi.org/10.1016/0375-9474(72)90733-6

W.R. Boykin, S.D. Baker and D.M. Hardy, Nucl. Phys. A 195, 241 (1972).

https://doi.org/10.1016/0375-9474(72)90732-4

R.J. Spiger, T.A. Tombrello, Phys. Rev. C 163, 964 (1967).

https://doi.org/10.1103/PhysRev.163.964

J. D. Eraly, Phys. Lett. B 757, 430 (2016).

https://doi.org/10.1016/j.physletb.2016.04.021

J. Bhoi and U. Laha, Phys. At. Nucl. 79, 370 (2016).

https://doi.org/10.1134/S1063778816030054

A.V. Dobrovolsky et al., Nucl. Phys. A 989, 40 (2019).

https://doi.org/10.1016/j.nuclphysa.2019.05.012

S. B. Doubovichenko, A. V. Dzhazairov-Kakhramanvo, Phys. Atom. Nucl. 58, 579

(1995). arXiv:nucl-th/9802080

R. Christy and I. Duck, Nucl. Phys. 24, 89 (1961).

https://doi.org/10.1016/0029-5582(61)91019-7

W. C. Haxton, R. G. Hamish Robertson, and A. M. Serenelli, Ann. Rev. Astron. 51,

(2013). https://doi.org/10.1146/annurev-astro-081811-125539

D.R. Tilley et al., Nucl. Phys. A 708, 3 (2002).

https://doi.org/10.1016/S0375-9474(02) 00597-3

H. W. Hammer , C. Ji, and D. R. Phillips, J. Phys. G 44, 103002 (2017).

https://doi.org/10.1088/1361-6471/aa83db

T. Kajino, H. Toki, and S. M. Austin, Astrophys. J. 319, 531 (1987).

K. M. Nollett and S. Burles, Phys. Rev. D 61, 123505 (2000).

https://doi.org/10.1103/PhysRevD.61.123505

R. S. Mackintosh, arXiv preprint (2012) arXiv:1205.046811

R.Jost and A. Pais, Phys. Review 82, 840 (1951) .

https://doi.org/10.1103/PhysRev.82.840

V.I. Zhaba, International Journal of Modern Physics E 25, 1650088 (2016).

https://doi.org/10.1142/S0218301316500889

A. Khachi, L. Kumar and O.S.K.S Sastri, J. Nucl. Phys. Mat. Sci. Rad. A 9, 87 (2021).

https://doi.org/10.15415/jnp.2021.91015

A. Khachi, L. Kumar, A. Sharma and O.S.K.S Sastri, J. Nucl. Phys. Mat. Sci. Rad. A

, 1 (2021). https://doi.org/10.15415/jnp.2021.91001

P.M. Morse, Phys. Rev., (1929). https://doi.org/10.1103/PhysRev.34.57

S. Ali and A.R. Bodmer, Nuclear Physics 80, 99 (1966). https://doi.org/10.1016/0029-5582(66)90829-7

G. N. Watson, Theory of Bessel Functions (Cambridge University Press, 1945).

F. Calogero, American Journal of Physics 36, 566 (1968).

https://doi.org/10.1119/1.1975005

V. V. Babikov, SOV PHYS USPEKHI 10, 271 (1967). https://doi.org/10.1070/PU1967v010n03ABEH003246

B. Talukdar, D. Chatterjee, and P. Banerjee, J. Phys. G:Nucl. Phys. 3, 813 (1977).

T. Szucs, G. Gyurky, Z. Halasz, G.G. Kiss and Z.Fulop, In EPJ Web of Conferences

01049 (2017). https://doi.org/ 10.1051/epjconf/201716501049

P.E. Hodgson, Adv. Phys., 25, 1 (1958). https://doi.org/10.1080/0001873580010115712

Downloads

Published

2022-06-20

How to Cite

(1)
Khachi, A.; Kumar, lalit; Sastri, O. 3He-α Elastic Scattering Phase Shifts in Various Channels Using Phase Function Method With Morse Potential. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 161-167.

Issue

Section

Conf_Articles