Systematic Compilation/Evaluation of Reduced B(E3) Transition Probabilities and Configurations of Octupole (∆I=3) Isomers in Mass A~200 Region




Isomeric states, E3 decay, reduced transition B(E3) strength


Background: Strong octupole correlations are observed in mass  region giving rise to a number of isomeric states decaying via  type of transition involving  interacting orbitals. Theoretically, the  and  neutron orbitals or the  and  proton orbitals are predicted to be involved in these enhanced  decays.

Purpose: This work reports on the systematics of reduced transition probabilities and configurations of octupole isomers in order to compare them based on their structures such as even-even, even-odd, odd-even and odd-odd.

Methods: The data for a total of  isomers is collected from the ENSDF/XUNDL Database of NNDC. The reduced  transition probabilities are evaluated and compiled using the available data on half-life and branching ratios of the isomeric states having pure  decay. In about  cases, we have also evaluated the half-lives to get their adopted value to obtain the  transition probability by RULER program.

Results:  A systematic variation in the reduced  transition strength is discussed as a function of neutron and proton number to see the contribution/effect from the core particles. An enhancement is observed experimentally for the isomeric states involving the  and  neutron orbitals or the  and  proton orbitals

Conclusions: The enhanced  transitions rates are observed in nuclei having configurations with octupole effects.


Download data is not yet available.


G. D. Dracoulis, Phys. Scr. T152, 014015 (2013).

C. F. v. Weizsäcker, Naturewissenschaften 24, 813 (1936).

Philip Walker and George Dracoulis, Nature, 399, 35 (1999).

Ashok Kumar Jain, Bhoomika Maheshwari and Alpana Goel, Nuclear Isomers: A Primer (Springer, chem, 2021), Edition 1..

Philip Walker and Zsolt Podolyák, Phys. Scr., 95, 044004 (2020)

Chin Fu Tsang and S. G. Nillson, Nucl. Phys. A140, 275 (1970).

P. J. Nolan and P. J. Twin, Ann. Rev. Nucl. Part. Sci., 38, 533 (1988). 10.1146/annurev.ns.38.120188.002533

N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301 (2016). 10.1088/0034-4885/79/11/116301

Ashok Kumar Jain, Bhoomika Maheshwari, Swati Garg, Monika Patial and Balraj Singh, Nucl. Data Sheet 128, 1 (2015).

F.G. Kondev, G. D. Dracoulis and T. Kibédi, Atomic Data and Nuclear Data Tables 103, 50 (2015).

S. C. Pancholi, The Pear Shaped Nuclei (World Scientific, New York, 2020), Edition 1.

P.A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).

W. Nazarewicz and P. Olanders, Nucl. Phys. A441, 420 (1985). 10.1103/physrevc.32.602

P A Butler, J. Phys. G: Nucl. Part. Phys., 43, 073002 (2016).

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (Springer, New York, 2012), Edition1. 10.1007/978-1-4612-9959-2

P. S. Rawat, S. Kumar, H. Chutani and M. Goyal, (to be published)

Evaluated Nuclear Structure Data Files (ENSDF) Database.

National Nuclear Data Centre (NNDC).

J. K. Tuli, Evaluated Nuclear Structure Data File: A Manual for Preparation of Data Sets (private communica-tion, 2001).

Experimental Unevaluated Nuclear Data List (XUNDL) Database.

T. W. Burrows, FMTCHK Version 10.3a (private communication, 2007).

T. W. Burrows, GTOL Version 7.2f (private communication, 2010).

T. Kibédi, BrIcc – program to evaluate conversion coefficients User’s manual for version 2.3b (private commu-nication, 2007).

T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya and P. M. Davidson, Nucl. Inst. And Meth. in Phys. Res. A589, 202 (2008).

T. W. Burrows, Program RULER (private communication, 1984).

S.G. Nillson, Dan Mat Fys Medd 29, 16 (1955).

Nuclear Science References (NSR) Database.




How to Cite

Rawat, P. S. .; Kumar, S. .; Chutani, H. .; Goyal, M. . Systematic Compilation/Evaluation of Reduced B(E3) Transition Probabilities and Configurations of Octupole (∆I=3) Isomers in Mass A~200 Region. J. Nucl. Phy. Mat. Sci. Rad. A. 2022, 9, 177-185.