Deformation Effect on Proton Bubble Structure in N = 28 Isotones
DOI:
https://doi.org/10.15415/jnp.2022.92025Keywords:
Covariant density functional, Pairing correlations, Quadrupole deformation, Bubble structure, Internal densityAbstract
Purpose: To study the effect of nuclear deformation on proton bubble structure of N = 28 isotones and and compare it with the spherical limits. The reduction of depletion fraction due to deformation can be explained by studying the relative differences in the central densities.
Methods: In this work, we have employed relativistic Hartree-Bogoliubov (RHB) model with
density-dependent meson-exchange (DD-ME2) interaction and separable pairing interaction. We have performed axially constrained calculations to investigate the deformed proton bubble structure in 40Mg, 42Si, 44S, and 46Ar, isotones of N = 28 shell closure.
Results: We have observed that the nuclear deformation play againsts the formation of bubble structure. In the spherical limits, the isotones of N = 28 shell closure have pronounced bubble structure with large value of depletion fraction. But, the increase in deformation leads to the disappearance of bubble structure. The internal densities in deformed nuclei are found to increase with deformation which can be related to the decrease in depletion fraction.
Conclusion: By using RHB model, we have investigated the ground state and proton bubble structure of N = 28 isotones. In 44S, and 46Ar, the 2s1/21d3/2 states get inverted due to the weakning of spin-orbit strength. Due to strong dynamical correlations, arising from deformation, the central depletion of proton density is greatly affected in these isotones. The decrease in depletion fraction can be related to increase in the internal density due to deformation
Downloads
References
HA Wilson. Physical Review , 69(9-10):538, 1946. https://doi.org/10.1103/PhysRev.69.538
X Campi and DWL Sprung. Physics Letters B , 46(3):291-295, 1973.
https://doi.org/10.1016/0370-2693(73)90121-4
JM Cavedon, B Frois, D Goutte, M Huet, Ph Leconte, CN Papanicolas, X-H Phan, SK Platchkov, S Williamson, W Boeglin, et al. Physical Review Letters , 49(14):978, 1982.
https://doi.org/10.1103/PhysRevLett.49.978
E Khan, M Grasso, J Margueron, and Nguyen Van Giai. Nuclear Physics A , 800(1-
:37-46, 2008. https://doi.org/10.1016/j.nuclphysa.2007.11.012
M Grasso, L Gaudefroy, E Khan, Tamara Niki¢, J Piekarewicz, O Sorlin, Nguyen
Van Giai, and Dario Vretenar. Physical Review C , 79(3):034318, 2009.
https://doi.org/10.1103/PhysRevC.79.034318
YZ Wang, JZ Gu, XZ Zhang, JM Dong, et al. Physical Review C , 84(4):044333, 2011.
https://doi.org/10.1103/PhysRevC.84.044333
JM Yao, Hua Mei, and ZP Li. Physics Letters B , 723(4-5):459-463, 2013.
https://doi.org/10.1016/j.physletb.2013.05.049
Thomas Duguet, Vittorio Somà, Simon Lecluse, Carlo Barbieri, and P Navrátil.
Physical Review C , 95(3):034319, 2017.
https://doi.org/10.1103/PhysRevC.95.034319
G Saxena, M Kumawat, M Kaushik, SK Jain, and Mamta Aggarwal. Physics Letters
B , 788:1-6, 2019. https://doi.org/10.1016/j.physletb.2018.08.076
J Dechargé, J- F Berger, K Dietrich, and MS Weiss. Physics Letters B , 451(3-4):275-
, 1999. https://doi.org/10.1016/S0370-2693(99)00225-7
A V Afanasjev and S Frauendorf. Physical Review C , 71(2):024308, 2005.
https://doi:10.1103/PhysRevC.71.024308
Michael Bender and Paul-Henri Heenen. In Journal of Physics: Conference Series ,
volume 420, page 012002. IOP Publishing, 2013.
https://doi.org/10.1088/1742-6596/420/1/012002
A Mutschler, A Lemasson, O Sorlin, D Bazin, C Borcea, R Borcea, Z Dombrádi,
J-P Ebran, A Gade, H Iwasaki, et al. Nature Physics , 13(2):152-156, 2017.
https://doi.org/10.1038/nphys3916
G Saxena, M Kumawat, BK Agrawal, and Mamta Aggarwal. Physics Letters B , 789:323-328, 2019. https://doi.org/10.1016/j.physletb.2018.10.062
X Y Wu, J M Yao, Z P Li, et al. Physical Review C , 89(1):017304, 2014.
https://doi.org/10.1103/PhysRevC.89.017304
A Shukla and Sven Åberg. Physical Review C , 89(1):014329, 2014.
https://doi.org/10.1103/PhysRevC.89.014329
Pankaj Kumar, Virender Thakur, Vikesh Kumar, and Shashi K Dhiman. The Eu-
ropean Physical Journal Plus , 136(10):1-11, 2021.
https://doi.org/10.1140/epjp/s13360-021-02036-0
Pankaj Kumar, Virender Thakur, Smriti Thakur, Vikesh Kumar, and Shashi K Dhiman. Acta Physica Polonica B , 52(5), 2021. https://doi.org/10.5506/APhysPolB.52.401
Bastian Schuetrumpf, Witold Nazarewicz, and P-G Reinhard. Physical Review C ,
(2):024306, 2017. https://doi.org/10.1103/PhysRevC.96.024306
J Meng, H Toki, JY Zeng, SQ Zhang, and S-G Zhou. Physical Review C , 65(4):041302, 2002.
https://doi.org/10.1103/PhysRevC.65.041302
Pankaj Kumar, Virender Thakur, Smriti Thakur, Vikesh Kumar, and Shashi K Dhiman. The European Physical Journal A , 57(1):1-13, 2021.
https://doi.org/10.1140/epja/s10050-021-00346-6
GA Lalazissis, Tamara Nik2i¢, Dario Vretenar, and Peter Ring. Physical Review C ,
(2):024312, 2005.
https://doi.org/10.1103/PhysRevC.71.024312
GA Lalazissis. Progress in Particle and Nuclear Physics , 59:277-284, 2007.
https://doi.org/10.1016/j.ppnp.2006.12.028
S Typel and HH Wolter. Nuclear Physics A , 656(3-4):331-364, 1999.
https://doi.org/10.1016/S0375-9474(99)00310-3
Ferdinand Hofmann, CM Keil, and H Lenske. Physical Review C , 64(3):034314, 2001.
https://doi.org/10.1103/PhysRevC.64.034314
F De Jong and H Lenske. Physical Review C , 57(6):3099, 1998.
https://doi.org/10.1103/PhysRevC.57.3099
Yuan Tian, Zhong-Yu Ma, and P Ring. Physics Letters B , 676(1-3):44-50, 2009.
https://doi.org/10.1016/j.physletb.2009.04.067
Tamara Nik2i¢, Peter Ring, Dario Vretenar, Yuan Tian, and Zhong-yu Ma. Physical
Review C , 81(5):054318, 2010. https://doi.org/10.1103/PhysRevC.81.054318
Tamara Nik2i¢, Nils Paar, Dario Vretenar, and Peter Ring. Computer physics com-
munications , 185(6):1808-1821, 2014. https://doi.org/10.1016/j.cpc.2014.02.027
Yuan Tian, Zhong-Yu Ma, and Peter Ring. Physical Review C , 79(6):064301, 2009.
https://doi.org/10.1103/PhysRevC.79.064301
GA Lalazissis, Dario Vretenar, Peter Ring, M Stoitsov, and LM Robledo. Physical
Review C , 60(1):014310, 1999.
https://doi.org/10.1103/PhysRevC.60.014310
O Sorlin. Nuclear Physics A , 834(1-4):400c-403c, 2010.
https://doi.org/10.1016/j.nuclphysa.2010.01.049
ZP Li, JM Yao, Dario Vretenar, Tamara Nik2i¢, H Chen, and Jie Meng. Physical
Review C , 84(5):054304, 2011. https://doi.org/10.1103/PhysRevC.84.054304
J Dechargé, J-F Berger, M Girod, and K Dietrich. Nuclear Physics A , 716:55-86, 2003.
https://doi.org/10.1016/S0375-9474(02)01398-2
Wataru Horiuchi and Tsunenori Inakura. Progress of Theoretical and Experimental
Physics , 2021(10):103D02, 2021. https://doi.org/10.1093/ptep/ptab087
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Pankaj Kumar, Virender Thakur, Smriti Thakur, Raj Kumar, Shashi K Dhiman

This work is licensed under a Creative Commons Attribution 4.0 International License.
View Legal Code of the above-mentioned license, https://creativecommons.org/licenses/by/4.0/legalcode
View Licence Deed here https://creativecommons.org/licenses/by/4.0/
![]() |
Journal of Nuclear Physics, Material Sciences, Radiation and Applications by Chitkara University Publications is licensed under a Creative Commons Attribution 4.0 International License. Based on a work at https://jnp.chitkara.edu.in/ |